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Abstract: Robotic Total Stations (RTS) are fully automated theodolites with electronic distance mea-
surement (EDM) that include a number of additional tools (e.g., camera, laser rangefinder, onboard
computer, and tracking software, etc.) enabling them to work autonomously. The added tools make
RTSs able to track mobile targets on civil structures thus opening to the use of RTSs in structural
monitoring. Unfortunately, the available RTSs are able to track a target up to a motion rate of 3 Hz. Re-
ducing mobile masses is a viable design strategy for extending this frequency border. Such a strategy
is pursued in this study by proposing the use of parallel pointing systems (PPS) as basic mechanical
architectures for RTSs. The literature on PPSs is reviewed and the applicable PPS architectures are
selected. Successively, the selected architectures are sized according to RTSs’ functional requirements,
and the positioning precision of the sized mechanisms is evaluated. The result of this study is that
there are three PPS architectures suitable for RTSs, whose detailed comparison is also presented.

Keywords: parallel mechanism; pointing system; dimensional synthesis; accuracy analysis; robotic
total station

1. Introduction

A theodolite [1] is an instrument that measures two angles, named pan and tilt angles,
which locate the orientation of a line pointing at a target. It consists of a telescope connected
to a frame (base) by the means of a universal (U) joint, which allows its rotation around
a vertical axis (pan rotation) and a horizontal axis (tilt rotation), and a set of graduated
circles that make the two angles accurately measurable. The base is levelled before the
angle measurement and provides the reference horizontal plane. The telescope is equipped
with a crosshair that enables the operator to point at a particular target; the axis of the
telescope is the line whose pan and tilt angles are measured. Land surveying, construction,
and mapping are the applicative fields of theodolites, where they establish points, lay out
boundaries, and determine the heights and positions of objects or other features on the
Earth’s surface.

Theodolites evolved into total stations, which also feature a laser rangefinder and
an onboard computer that calculates the position of the target point with respect to the
instrument. The added tools allow the operator (usually a surveyor) to point at a target,
record the measured angles and distance, and repeat the two previous operations for
many target points without moving the instrument to create a detailed 3D map of the site.
Successively, total stations evolved into robotic total stations (RTS) that include a number
of additional tools (e.g., actuators for controlling their motion, camera, tracking software,
etc.), enabling them to work autonomously by following a loaded measurement program
or remote controller.
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The added tools [2–6] make RTSs also able to track mobile targets on civil structures,
thus making possible their use in structural monitoring [7–14]. Indeed, they have been em-
ployed either together with other instruments, as GPS [7,8], or alone to measure the natural
frequencies of road bridges [9,10], railway bridges [11,12], and pedestrian bridges [13,14]
excited by the transit of people or vehicles, that is, when the oscillation amplitude has the
order of centimeters and the oscillation frequency is lower than 1 Hz. In civil structures, the
frequency border of 1 Hz is sufficient for many applicative cases; nevertheless, extending
this border up to 5 Hz, or better, to 10 Hz, would greatly extend this field of application.

Despite the fact that recently presented RTSs (see Table 1) are equipped with 360◦

reflector prisms [15] and have doubled their recording rate [16], extending this frequency
border over 3 Hz still is a goal to reach [17]. Since RTSs’ angle/distance measurements
come after the telescope collimation toward the target point and the collimation is a
mechanical operation, extending this frequency limitation is intimately related to increasing
the dynamic performance of the mechanism that moves the telescope.

Increasing the dynamic performances of any mechanical system unavoidably passes
through a reduction in the mobile masses. Table 1 shows that the total mass of commercial
RTSs ranges roughly from 5 kg to 9.5 kg and that most of their mass is loaded on mobile
parts, even though the telescope, which is the component to move, usually weighs less than
0.5 kg. In short, until now, the automation of total stations has been implemented by simply
adding actuators in the two revolute (R) pairs of the U-joint, which connects the telescope
to the base, without redesigning the mechanical system for reducing all the mobile masses.

Moving the electrically supplied parts (e.g., actuators, Wi-Fi antenna, and display,
etc.) together with their batteries onto the base is the design strategy to implement for
greatly reducing the mobile masses. The vast majority of these components (e.g., Wi-Fi
antenna, onboard computer, and display) are moveable onto the base without changing
the mechanism that moves the telescope; whereas, moving the actuators onto the base
needs to change such a mechanism from a serial architecture to a parallel architecture1.
Replacing a serial architecture with a parallel one also brings other advantages. Indeed,
parallel architectures, in general, are stiffer and more precise than their serial counterpart.
Parallel architectures that orientate a line with respect to their base are named parallel
pointing systems (PPS).

This paper reviews the PPS architectures proposed in the literature and selects those
that are more suitable for RTSs with reference to RTSs’ functional requirements. Suc-
cessively, it addresses the dimensional synthesis and accuracy analysis of the selected
architectures. The result of this study is that there are three PPS types that are more suitable
for RTSs. The pros and cons of these three PPS architectures are also discussed.

The paper is organized as follows. Section 2 reviews the literature on PPSs, defines the
functional requirements for a PPS to be used in an RTS, and selects the most suitable ones.
Section 3 addresses the position analysis and dimensional synthesis of the PPSs selected
in the previous section, using the RTS’s functional requirements identified in the same
section. Finally, Section 4 discusses the results, also evaluating their accuracy, and Section 5
draws conclusions.

1 Serial architectures are open kinematic chains (in this case, the U joint) that connect the base to the end effector
(in this case, the link carrying the telescope). Differently, parallel architectures feature more-than-one kinematic
chains (limbs) that simultaneously connect the end effector to the base.
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Table 1. Selection and data sheets of commercial robotic total stations (RTS).
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Manufacturer Leica Sokkia Trimble Topcon GeoMax Carlson Hilti Stonex 

Model Leica Nova TS60 iX-1201 S9 HP MS05AXII Zoom95 STReAM360 POS 180 R180 

Angular accuracy 0.5″ (0.15 mgon) 1″ (0.3 mgon) 
0.5″ (0.15 
mgon) 

0.5″ (0.15 
mgon) 1″ (0.3 mgon) 1″ (0.3 mgon) 3″ 0.5″ 

Distance accuracy 0.6 mm + 1 ppm 1 mm + 2 ppm 
0.8 mm + 1 
ppm 

0.8 mm + 1 
ppm 

1 mm + 1.5 
ppm 

1 mm + 1.5 
ppm -- 1 mm + 1 ppm 

Maximum panrotation 
speed 

180°/s 150°/s 115°/s 85°/s 90°/s -- 90°/s 180°/s 

Motorization Piezo Drives Direct Drives MagDrive 
servo 

DC motor 
drives 

Hybrid 
Drives 

Hybrid Drives -- Tdrive 

Weight 7.7 kg 5.8 kg 5.85 kg 6.8 kg 5.3 kg 5.3 kg -- 9.3kg 

Other data 
Cameraʹs frame rate: Up 
to 20 fps 

Max auto tracking 
peed: 20°/s 

Tracking rate: 
10 Hz -- -- 

Tracking speed: 
90 km/h at 100 
m 

-- -- 
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Model Leica Nova TS60 iX-1201 S9 HP MS05AXII Zoom95 STReAM360 POS 180 R180
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2. Selection of PPS Architectures for RTS

The literature on the type synthesis2 of parallel architectures is practically complete.
Indeed, type synthesis methods based on graph theory [18–23], screw theory [24–30] group
theory [31–38], and evolutionary morphology [39], among others, have been proposed to-
gether with a long list of parallel-architecture types that satisfy many motion requirements.
In this literature, the most extended lists of PPS architectures are reported in [37], [38]
(Chap. 12), [39] (Vol. 4). Over these lists, papers (e.g., [40,41]) and patents (e.g., [42]) on
specific PPS architectures have been presented, too.

PPSs are two degrees-of-freedom (DOF) closed-chain mechanisms. All the PPS archi-
tectures proposed in the literature exhibit a U-joint that directly connects the end effector to
the base. Such a U-joint is either fully passive (i.e., the two R pairs of the U-joint are both
non-actuated) or partially active (i.e., one out of the two R pairs of the U-joint is actuated). It
is fully passive in PPS architectures (e.g., [40,41]) that have two more limbs connecting the
end effector to the base: these two additional limbs contain the two actuators (one per limb).
These two-looped architectures pay their higher stiffness with a workspace reduction; they
are suitable for applications (e.g., orientating satellite antennas or solar panels, etc.) where
the end effector is heavy and the requested orientation workspace is limited.

Differently, the U joint is partially active in PPS architectures (e.g., [42]) that contain
only one additional limb, which carries the second actuator. Since the telescope of an RTS
is not a heavy object and it needs an ample orientation workspace, these single-looped
architectures with a partially active U-joint must be chosen for RTSs. In particular, in the U
joint, the R pair adjacent to the base, that is, the one with a vertical axis (see the images in
Table 1), which makes the telescope perform the pan rotation, must be actuated. Moreover,
in the additional limb, the first joint (i.e., the one adjacent to the base) must be actuated so
that the remaining part of the limb can play only the role of a mechanical transmission that
controls the motion of the non-actuated R pair of the U joint (i.e., the one that makes the
telescope perform the tilt rotation). Figure 1 shows a generic PPS architecture that satisfies
these requirements.

According to the Grübler–Kutzbach mobility criterion [43] and Euler’s formula [44],
a two-DOF single-looped spatial mechanism, like the PPS architectures selected for RTSs,
must satisfy the following condition to be non-overconstrained:

2 = 6(m − 1)− ∑
i=1,5

(6 − i)ci

m = ∑
i=1,5

ci

 ⇒ ∑
i=1,5

i ci = 8 (1)

where m is the number of links and ci is the number of joints with i DOFs. Since the U
joint yields a term equal to 2 in the summation on the left-hand side of Equation (1), the
following relationships hold for the additional limb of a non-overconstrained PPS:

∑
i=1,5

i ci,limb = 6

∑
i=1,5

ci,limb = ∑
i=1,5

ci − 1

mlimb = m − 2 = ∑
i=1,5

ci,limb − 1

(2)

where mlimb is the number of links of the additional limb and ci,limb is the number of joints
with i DOFs of the additional limb.

Choosing non-overconstrained PPS architectures is preferable since they do not require
the imposition of tight tolerances on the unavoidable geometric errors that come out during
manufacturing. Nevertheless, reducing the number of links and joints under the values
provided by Equation (2) is also interesting when the introduced overconstraint is as “easy”
to obtain as, for instance, it is for some planar or spherical kinematic chains. Moreover,

2 Type synthesis is the identification of mechanism topologies that match some motion requirements.
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PPS architectures that do not contain passive (i.e., non-actuated) prismatic (P) pairs must
be preferred.
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R

R

telescope's axis

universal
joint base

additional
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end
effector

Figure 1. Generic PPS architecture suitable for an RTS.

The above-defined requirements, together with the fact that the pan rotation must be
a complete rotation in an RTS (i.e., the additional limb must not limit the pan rotation),
lead one to select the PPS architectures shown in Figures 2–4 with five, six, and seven links,
respectively. Such architectures are deduced from the three main families of single-looped
PPS architectures without passive P pairs reported in [37], [38] (Chap. 12), [39] (Vol. 4) by
imposing that the additional limb must not limit the pan rotation and that its number of
links and joints must be as small as possible.
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Figure 2. Spherical five-bar PPSs of type (C and S stand for cylindrical and spherical pair, respec-
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RR-RCS (non-overconstrained solution). 
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Figure 2. Spherical five-bar PPSs of type (C and S stand for cylindrical and spherical pair, respectively;
the underscore indicates the actuated pairs): (a) RR-RRR (overconstrained solution), and (b) RR-RCS
(non-overconstrained solution).

The PPS of Figure 2a, hereafter named the “spherical PPS”, is obtained from the
general scheme of Figure 1 by choosing an additional limb of the RRR type (the underscore
indicates an actuated joint). The peculiarities of this RRR limb are the following: (a.1)
the axes of the three R pairs are so oriented that they all pass through the center of the
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partially active U joint (i.e., the purple RR limb in the figure), and (a.2) the axis of the
actuated R-pair, adjacent to the base, coincides with the pan-rotation axis. The resulting
single-looped architecture is a particular spherical five-bar linkage of the RR-RRR type that
has the spherical motion center coincident with the U-joint center. Condition (a.2) is the one
that allows the telescope to perform a complete pan rotation. This spherical five-bar linkage
is overconstrained (i.e., it does not satisfy Equation (1)); nevertheless, its overconstraint can
be easily removed by replacing, in the RRR limb, the intermediate R-pair with a cylindrical
(C) pair and the R-pair adjacent to the end effector with a spherical (S) pair, as shown in
Figure 2b. Doing so, the additional limb becomes of the RCS type.
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The PPS of Figure 3a, hereafter named the “1st decoupled PPS”, is obtained from
the general scheme of Figure 1 by choosing an additional limb of the PRRR type. The
peculiarities of this PRRR limb are the following: (b.1) the axis of the first R-pair, adjacent
to the actuated P pair, coincides with the pan-rotation axis, (b.2) the sliding direction of
the actuated P pair is parallel to the pan-rotation axis, and (b.3) the axes of the second
and the third R pairs are both parallel to the tilt-rotation axis. The resulting single-looped
architecture is a particular six-bar linkage of the RR-PRRR type that, when the actuated P
pair (the actuated R pair) is locked, keeps the tilt (the pan) angle fixed (i.e., the pan and
tilt rotations are independently moveable). This six-bar linkage is overconstrained (i.e., it
does not satisfy Equation (1)); nevertheless, its overconstraint can be easily removed by
replacing, in the PRRR limb, the R-pair adjacent to the end effector with an S pair, as shown
in Figure 3b. Doing so, the additional limb becomes of the PRRS type.

The PPS of Figure 4a, hereafter named the “2nd decoupled PPS”, is obtained from the
general scheme of Figure 1 by choosing an additional limb of PRRRR type. The peculiarities
of this PRRRR limb are the following: (c.1) the axis of the first R-pair, adjacent to the
actuated P pair, coincides with the pan-rotation axis, (c.2) the sliding direction of the P pair
and the axes of the second and third R pairs are all parallel to the pan-rotation axis, and
(c.3) the axis of the fourth R pair, adjacent to the end effector, is parallel to the tilt-rotation
axis. The resulting single-looped architecture is a particular seven-bar linkage of the RR-
PRRRR type that, when the actuated P pair (the actuated R pair) is locked, keeps the tilt
(the pan) angle fixed (i.e., the pan and tilt rotations are independently moveable). This
seven-bar linkage is overconstrained (i.e., it does not satisfy Equation (1)); nevertheless, its
overconstraint can be easily removed by replacing, in the PRRRR limb, the last two R-pairs
with an S pair, as shown in Figure 4b. Doing so, the additional limb becomes of the PRRS
type and the resulting linkage has only six links.

After having selected the PPS architectures suitable for RTSs, the dimensional synthesis
of these architectures must be completed by imposing that:

(i) the tilt angle can cover a variation range (at least 90 degrees) suitable to make the
telescope axis assume any direction inside the upper hemisphere;

(ii) the additional limb guarantees a sufficiently good transmission angle at any
PPS configuration.

The next section, firstly, will deduce the kinematic relationships necessary to control
the motion of the selected PPS architectures; then, it will exploit the deduced relationships
to complete the dimensional synthesis of the selected PPS architectures by imposing the
above-defined additional design requirements.

3. Kinematic Analysis and Dimensional Synthesis

In order to evaluate and compare the selected PPS architectures, the analytic rela-
tionships necessary to solve their kinematic analysis problems, which are involved in
their motion control, must be deduced. Moreover, their dimensional synthesis must be
completed for the determination of the geometric constants’ values that make the PPS
satisfy the above-defined design requirements (i) and (ii).

In the following part of this section, these analytic/numeric computations are imple-
mented for each of the three PPS architectures identified in the previous section. In doing
so, a variation range of 120◦ is chosen for the tilt angle when imposing design requirements
(i) and (ii). Hereafter, ψ, ζ, and θ1 denote, respectively, the pan angle, the tilt angle, and the
actuated-joint variable of the partially active U joint that directly connects the end effector
to the base, which is the rotation angle of the R pair adjacent to the base (see Figure 1).
Moreover, without losing generality, no phase difference is assumed between ψ and θ1,
that is, for all the selected PPSs (see Figure 1), the following relationship holds:

ψ = θ1 (3)

Eventually, the kinematic analyses of the overconstrained mechanisms (i.e., Figures 2a,
3a and 4a) and their non-overconstrained counterparts (i.e., Figures 2b, 3b and 4b) coincide
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with one another if no geometric error occurs. As a consequence, since the evaluation of
geometric error effects is out of the scope of this work, the kinematic analyses that follow
will refer to the nominal geometry and, for the sake of simplicity, all the notations will
be defined by using the overconstrained or non-overconstrained architectures according
to convenience.

3.1. Spherical PPS

Figure 5a illustrates the adopted notations for the kinematic analysis and dimensional
synthesis of the PPSs shown in Figure 2a. With reference to Figure 5a, Ox0y0z0 (Ox1y1z1) is
a Cartesian reference system fixed to the base (to the cross link of the U joint (see Figure 2a)
with the origin, O, coincident with the center of the U joint, the z0-coordinate axis (z1-
coordinate axis) coincident with the pan rotation axis, and the y0-coordinate axis as a phase
reference for measuring the pan rotation (the y1-coordinate axis is coincident with the tilt
rotation axis). The x0y0-coordinate plane, coincident with the x1y1-coordinate plane, is the
horizontal plane of the theodolite, which is also the phase reference for measuring the tilt
angle, ζ, whereas the two mutually orthogonal axes of the two R pairs constituting the U
joint lie on the y1z1-coordinate plane. Angle αi, for i = 0, . . .,4, is the constant angle between
the axes of the R pairs at the endings of link i. In particular, links 0 and 3 are the base and
the cross link of the U joint, respectively; as a consequence, α0 and α3 are equal to 0◦ and
90◦, respectively, whereas α1, α2, and α4 must be sized by imposing design requirements
(i) and (ii). Eventually, angle θ2 is the joint variable of the first R pair, adjacent to the base,
of the additional limb of the RRR type, and angle φ is equal to (θ2 − θ1).
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locking the pan rotation, ψ.

When the pan rotation, ψ (=θ1 (Equation (3))), is locked, the spherical five-bar linkage
becomes the spherical four-bar linkage shown in Figure 5b, which has link 1 as an input
link with φ (=(θ2 − θ1)) as the input variable and link 4 as the output link with the tilt
angle, ζ, as the output variable. Such a spherical four-bar linkage is the same for any value
of ψ. As a consequence, the kinematic model of this spherical four-bar linkage, together
with Equation (3), provides the kinematic model of this spherical PPS.
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With reference to Figure 5b, τ is the transmission angle [45] of this spherical four-bar
linkage and h is the convex angle between segments OB0 and OA. Moreover, the following
relationships hold:

ζ + µ =
π

2
; µs + µu + µ = π; µs + µu =

π

2
+ ζ. (4)

The cosine law for spherical triangles [45], when applied to the spherical triangles
∆A0B0A and ∆AB0B of Figure 5b, which share side h, yields:

cosα2 = cos h cosα4 + sin h sinα4 cosµu (5a)

cos h = cosα1 cosα3 + sinα1 sinα3 cosφ (5b)

cosα1 = cos h cosα3 + sin h sinα3 cosµs (5c)

whereas the application of the sine law for spherical triangles [45] to the spherical triangle
∆A0B0A gives:

sin h
sinφ

=
sinα1

sinµs
⇒ sin h sinµs = sinα1 sinφ (6)

By taking into account the value of α3 (=π/2), the introduction of Equation (5b) into
Equation (5a) transforms it as follows:

cosα2 = sin α1 cosφ cosα4 + sin h sinα4 cosµu (7)

which, after having introduced the expressions of µu coming from Equation (4) and cosµs
and sinµs coming from Equations (5c) and (6), respectively, yields

sinα1 sinα4 sinφ cos ζ − cosα1 sinα4 sin ζ + sinα1 cosα4 cosφ− cosα2 = 0 (8)

Equation (8) is the closure equation of the spherical four-bar linkage of Figure 5b.
Over ζ (i.e., the output variable) and φ (=(θ2 − θ1), i.e., the input variable), it contains only
the geometric constants of the linkage (i.e., α1, α2, and α4). If the geometric constants are
known (as happens when a control algorithm must be implemented), it can be used to
compute ζ as a function of φ (direct position analysis (DPA)), or, vice versa, φ as a function
of ζ (inverse position analysis (IPA)). Differently, if the function ζ = ζ(φ) is fully or partly
known (i.e., design requirements are assigned), it can be used to compute the linkage’s
geometric constants α1, α2, and α4 (dimensional synthesis).

3.1.1. Position Analysis of the Spherical PPS

The computation of ζ for the assigned values of the geometric constants and φ (i.e.,
the solution of the DPA) is implementable by rewriting Equation (8) as follows:

m1 sin ζ +m2 cos ζ +m3 = 0 (9)

where: 
m1 = − cosα1 sinα4
m2 = sinα1 sinα4 sinφ
m3 = sinα1 cosα4 cosφ− cosα2

(10)

and then, by solving the quadratic equation obtained from Equation (9) through the half-
tangent substitution (i.e., the change of variable sinx = 2t/(1 + t2) and cosx = (1 − t2)/(1 + t2)
where t = tan(x/2)). Doing so, the following closed-form solution is obtained:

ζi = 2 atan2
(
−m1 + (−1)i

√
m1

2 +m22 − m32, m3 − m2

)
i = 0, 1 (11)
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Analogously, the computation of φ for the assigned values of the geometric constants
and ζ (i.e., the solution of the IPA) is implementable by rewriting Equation (8) as follows:

n1 sinφ+ n2 cosφ+ n3 = 0 (12)

where: 
n1 = sinα1 sinα4 cos ζ
n2 = sinα1 cosα4
n3 = − cosα1 sinα4 sin ζ − cosα2

(13)

and then, by solving the quadratic equation obtained from Equation (12) through the
half-tangent substitution. Doing so, the following closed-form solution is obtained:

φi = 2 atan2
(
−n1 + (−1)i

√
n1

2 + n22 − n32, n3 − n2

)
⇒ θ2,i = φi +ψ i = 0, 1 (14)

3.1.2. Dimensional Synthesis of the Spherical PPS

Here, design requirement (i) with ∆ζ = ζmax − ζmin = 120◦ must be imposed by taking
into account that a crank-rocker four-bar has to be preferred and that design requirement
(ii) must be satisfied, too. In order to have a crank-rocker four-bar, the Grashof rule [45]
must be satisfied, that is, the following additional conditions must be imposed:{

α1 = αmin = min(α1,α2,α3,α4)

αmin + αmax ≤ 1
2 ∑

i=1,4
αi

(15)

where αmax = max(α1, α2, α3, α4).
The two extreme positions of link 4 (i.e., the rocker) correspond to the minimum, ζmin,

and the maximum, ζmax, values of ζ and occur [45] when links 1 and 2 are flattened, that is,
when the three segments OA0, OA, and OB lie on the same plane. The application of the
cosine law to the spherical triangle ∆BA0B0 at the occurrence of such a condition leads one
to write the two equations:

cos(α1 + α2) = cos α3 cosα4 − sin α3 sinα4 sin(ζmin +
2
3
π)

α3 =
π
2

↓
= − sinα4 sin(ζmin +

2
3
π) (16a)

cos(α2 − α1) = cos α3 cosα4 − sin α3 sinα4 sin ζmin

α3 =
π
2

↓
= − sinα4 sin ζmin (16b)

which, by expanding the left-hand sides, can be transformed as follows:

[
cosα1 cosα2 − sinα1 sinα2 =

= − sinα4 sin(ζmin +
2
3π)[

cosα1 cosα2 + sinα1 sinα2 =

= − sinα4 sin ζmin

 ⇒



sin ζmin = − cosα1 cosα2 + sinα1 sinα2
sinα4

cos ζmin =

cosα1 cosα2

[
cos

(
2
3
π

)
− 1

]
+ sinα1 sinα2

[
1+ cos

(
2
3
π

)]
sin

(
2
3
π

)
sinα4

(17)

where the trigonometric identity sin(ζmin+
2
3
π) = sin ζmin cos

(
2
3
π

)
+ cos ζmin sin

(
2
3
π

)
has

also been introduced. Eventually, the introduction of Equation (17) into the trigonometric
identity sin2ζmin + cos2ζmin = 1 yields:

2 cos2 α1 cos2 α2

[
1 − cos

(
2
3
π

)]
+ 2 sin2 α1 sin2 α2

[
1+ cos

(
2
3
π

)]
= sin2

(
2
3
π

)
sin2 α4 (18)
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The transmission angle, τ, reaches its minimum, τmin, and maximum, τmax, values
when links 1 and 3 are flattened [45], that is, when the three segments OA0, OA, and OB0
lie on the same plane. The application of the cosine law to the spherical triangle ∆AB0B at
the occurrence of such a condition leads one to write the two equations:

cos(α3 + α1) = cos α2 cosα4 + sin α2 sinα4 cos τmax (19a)

cos(α3 − α1) = cos α2 cosα4 + sin α2 sinα4 cos τmin (19b)

which, since α3 =
π
2 , become:

− sinα1 = cos α2 cosα4 + sin α2 sinα4 cos τmax (20a)

sinα1 = cos α2 cosα4 + sin α2 sinα4 cos τmin (20b)

If the values of τmin and τmax are assigned so that design requirement (ii) is satis-
fied, Equations (18) and (20) become a system of three trigonometric equations in three
unknowns (i.e., α1, α2, and α4), whose solution provides the sought-after sizes that satisfy
both the design requirements. If the found solution also satisfies condition (15), it can be
accepted; otherwise, the system must be solved again with new assigned values of τmin
and τmax until all the conditions are satisfied.

The replacement of Equation (20a) with the sum of Equation (20a,b) and the intro-
duction of Equation (20b) into Equation (18) after replacing cos2α1 with the trigonometric
identity cos2α1 = 1 − sin2α1 transform the system to solve as follows: 2(cos α2 cosα4 + sin α2 sinα4 cos τmin)

2
[

sin2 α2 − cos2 α2 + cos
(

2
3
π

)]
+

+2 cos2 α2

[
1 − cos

(
2
3
π

)]
= sin2

(
2
3
π

)
sin2 α4

(21a)

2 cos α2 cosα4 + q sin α2 sinα4 = 0
with
q = (cos τmax + cos τmin)


i f α2 ̸= π

2
↓
⇒ tan α2 = −2 cosα4

q sinα4
(21b)

sinα1 = cos α2(cosα4 + tan α2 sinα4 cos τmin) = ±cosα4 + tan α2 sinα4 cos τmin√
1+ tan2 α2

(21c)

where Equation (21c) is Equation (20b) transformed by taking into account the trigonometric
identity cos x = ±1/

√
1+ tan2 x. It is worth stressing that the value α2 = π/2, excluded

in the deduction of Equation (21b), leads the determination of acceptable values of α4
(i.e., α4 ∈ [0, π]) only if simultaneously q = (cos τmax + cos τmin) = 0. In this case, such
a condition makes Equation (21b) identically satisfied and transforms Equation (20b) as
follows sinα1 = sinα4 cos τmin, whose substitution into Equation (18) yields the following

condition on τmin: 2 cos2 τmin

[
1+ cos

(
2
3
π

)]
= sin2

(
2
3
π

)
, that is, cosτmin = −cosτmax

=
√

3/2. Such formulas make one determine τmin = 30◦, τmax = 150◦, and, as possible values
for α1 and α4 that also satisfy condition (15), α1 = 46.7805◦ = 0.81647 rad and α4 = 57.29578◦

= 1 rad. Eventually, the introduction of α2 = π/2 into Equation (17) yields sin ζmin =
− sinα1/ sinα4 ≡ − cos τmin, which provides ζmin = −60◦ and ζmax = ζmin + 120◦ = 60◦

for τmin = 30◦.
The introduction of Equation (21b) into Equation (21a,c), where cosα2 and sinα2 have

been replaced through the trigonometric identities cos x = ±1/
√

1+ tan2 x and sin x =
± tan x/

√
1+ tan2 x, transforms system (21) into the final form:

tan α2 = −2 cosα4

q sinα4
(22a)
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sinα1 = ± r|sinα4| cosα4√
q2 sin2 α4 + 4 cos2 α4

(22b)

2q2

q2 sin2 α4 + 4 cos2 α4

{[
1 − cos

(
2
3
π

)]
+ cos2 α4

(
r
q

)2
[

1+ cos
(

2
3
π

)
− 2q2 sin2 α4

q2 sin2 α4 + 4 cos2 α4

]}
= sin2

(
2
3
π

)
(22c)

with r = (cos τmax − cos τmin).
The introduction of the trigonometric identity sin2α4 = 1 − cos2α4 into Equation (22c),

together with the variable change p = cos2α4, transforms it into the following quadratic
equation:

g2 p2 + 2g1 p+ g0 = 0 (23)

with:

g0 = q4
{

2
[

1 − cos
(

2
3
π

)]
− sin2

(
2
3
π

)}
g1 = q2

{
[4 − q2]

[
1 − cos

(
2
3
π

)
− sin2

(
2
3
π

)]
+ r2

[
cos

(
2
3
π

)
− 1

]}
g2 = 2r2

{
4
[

1+ cos
(

2
3
π

)]
−

[
cos

(
2
3
π

)
− 1

]
q2
}
− sin2

(
2
3
π

)
[4 − q2]

2

(24)

whose solutions are:

pi =
−g1 + (−1)i

√
g1

2 − g0g2

g2
⇒ (cosα4)ij = (−1)j√pi i, j = 0, 1 (25)

The values of α4 obtained from Equation (25) as a function of τmin and τmax, when
back substituted into Equation (22a,b), provide the corresponding values of α1 and α2.
Eventually, the back substitution of the so-obtained triplets (α1, α2, α4) into Equation (17)
yields the corresponding values of ζmin. Equation (25) yields, at most, four real values for
cosα4 and as many values of α4 in the range of [0, π] rad. Successively, Equation (22a)
(Equation (22b)) associates one value of tanα2 (two values of sinα1), which corresponds
to two values of α2 (of α1) in the range of [0, π] rad, to each computed value of α4. In
conclusion, system (22) can have up to eight values of (α1, α2, α4), with α1, α2, and α4
belonging to the range of ]0, π[ rad that solve it and are selectable as possible sides of the
studied spherical four bar.

This procedure has been implemented by using many values of τmin and τmax, but
it has not led to the identification of values of α1, α2, α4, and ζmin that correspond to the
values of τmin and τmax better than the ones found above for the case α2 = 90◦ = π/2 rad
(i.e., τmin = 30◦, τmax = 150◦). As a consequence, those values (i.e., τmin = 30◦, τmax = 150◦,
α2 = 90◦ = π/2 rad, α1 = 46.7805◦ = 0.81647 rad, α4 = 57.29578◦ = 1 rad, and ζmin = −ζmax
= −60◦ = −1.0472 rad) are adopted as the optimal solution of the dimensional synthesis.

3.2. First Decoupled PPS

Figure 6 illustrates the adopted notations for the kinematic analysis and dimensional
synthesis of the PPS shown in Figure 3a. With reference to Figure 6, d2 is the actuated-joint
variable of the P pair; τ is the transmission angle; and a1, a3, and a4 are the distances
between the two ending R-pair axes of links 1, 3, and 4, respectively, and they are the
geometric constants of this PPS.

When the pan rotation is locked, the additional limb becomes a single-DOF planar
linkage of type PRRR, whose motion plane is the plane perpendicular to the tilt-rotation
axis that passes through the pan-rotation axis. In this plane, the adopted notations make it
possible to write the following two relationships:

d2 = a3 sin(τ+ ζ)− a1 sin ζ (26a)
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a1 cos ζ = a4 + a3 cos(τ+ ζ) (26b)
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Figure 6. Kinematic scheme of the 1st decoupled PPS: notations.

Equation (26a,b) immediately allow for the determination of the explicit expressions
of sin(τ+ ζ) and cos(τ+ ζ), respectively, whose introduction into the trigonometric iden-
tity cos2(τ+ ζ) + sin2(τ+ ζ) = 1 yields the closure equation:

a3
2 = (d2 + a1 sin ζ)2 + (a1 cos ζ − a4)

2 ⇒ a3
2 = d2

2 + a4
2 + a1

2 + 2a1(d 2 sin ζ − a4 cos ζ) (27)

3.2.1. Position Analysis of the 1st Decoupled PPS

The computation of ζ for assigned values of the geometric constants and d2 (i.e., the
solution of the DPA) is implementable by rewriting Equation (27) as follows:

k1 sin ζ + k2 cos ζ + k3 = 0 (28)

where: 
k1 = 2a1d2
k2 = −2a1a4
k3 = d2

2 + a4
2 + a1

2 − a3
2

(29)

and then, by solving the quadratic equation obtained from Equation (28) through the
half-tangent substitution. Doing so, the following closed-form solution is obtained:

ζi = 2 atan2
(
−k1 + (−1)i

√
k1

2 + k22 − k32, k3 − k2

)
i = 0, 1 (30)

Differently, the computation of d2 for assigned values of the geometric constants and
ζ (i.e., the solution of the IPA) is implementable by simply noting that Equation (27) is a
quadratic equation in d2, whose solution is:

d2,i = −a1 sin ζ + (−1)i
√

a1
2 sin2 ζ − a4

2 − a1
2 + a32 + 2a1a4 cos ζ i = 0, 1 (31)

3.2.2. Dimensional Synthesis of the 1st Decoupled PPS

With reference to Figure 6, the transmission angle is computable as a function of the
actuated-joint variable, d2, as follows:
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[
∥B − O∥2 = [(B − A) + (A − O)]× [(B − A) + (A − O)] =

= ∥B − A∥2 + ∥A − O∥2 + 2(B − A)× (A − O)

∥B − O∥2 = d2
2 + a4

2; ∥B − A∥2 = a3
2; ∥A − O∥2 = a1

2

(B − A)× (A − O) = 2a1a3 cos(π− τ) = −2a1a3 cos τ


⇒


cos τ =

a1
2 + a3

2 − a4
2 − d2

2

2a1a3
=

=

1+
(

a3

a1

)2
−

(
a4

a1

)2
−

(
d2

a1

)2

2
(

a3

a1

) (32)

The same figure reveals that τmax (ζmin) and τmin (ζmax) correspond to the maximum,
d2,max, and minimum, d2,min, values of d2, respectively. Accordingly, if ζmax = 60◦ and
ζmin = −60◦ (considering that design requirements (i) with ∆ζ = ζmax − ζmin = 120◦ must
be imposed) are chosen, the introduction of (τmax, ζmin), and then, of (τmin, ζmax), into
Equation (26b) yields the following two relationships:(

a4

a1

)
+

(
a3

a1

)
cos

(
τmax −

π

3

)
= cos

(π
3

)
(33a)

(
a4

a1

)
+

(
a3

a1

)
cos

(
τmin +

π

3

)
= cos

(π
3

)
(33b)

which are compatible if and only if the following relationship holds:

cos
(
τmax −

π

3

)
= cos

(
τmin +

π

3

)
⇒ τmax −

π

3
= ±

(
τmin +

π

3

)
⇒


τmax − τmin =

2π
3

or

τmax + τmin = 0
(34)

Since 90◦ is the best transmission angle and the variation range of τ should be centered
on this value, the condition τmax + τmin = 0 is not valid, whereas the other condition can
be satisfied by choosing τmax = 150◦(= 90◦ + 60◦) and τmin = 30◦(= 90◦ − 60◦), which,
when introduced into Equation (33), yield the condition a4 = 0.5a1 (see Figure 7). Moreover,
Equation (26a) yields (see Figure 7):

d2,max = a3 sin(τmax + ζmin)− a1 sin ζmin
d2,min = a3 sin(τmin + ζmax)− a1 sin ζmax

}
⇒



 ∆d2 = d2,max − d2,min =
= a3[sin(τmax + ζmin)− sin(τmin + ζmax)]+
+a1(sin ζmax − sin ζmin) 2d2,average = d2,max + d2,min =
= a3[sin(τmax + ζmin) + sin(τmin + ζmax)]+

−a1(sin ζmax + sin ζmin)

(35)

System (35) leads one to determine the following explicit formulas:
a1 =

2d2,average[sin(τmax + ζmin)− sin(τmin + ζmax)]− ∆d2[sin(τmax + ζmin) + sin(τmin + ζmax)]

∆

a3 = −
∆d2(sin ζmax + sin ζmin) + 2d2,average(sin ζmax − sin ζmin)

∆

(36)

with: [
∆ = −{[sin(τmax + ζmin)− sin(τmin + ζmax)](sin ζmax + sin ζmin)+

+(sin ζmax − sin ζmin)[sin(τmax + ζmin) + sin(τmin + ζmax)]}
(37)

which, for the above-determined values of τmax, ζmin, τmin, and ζmax, yields:

a1 =
∆d2√

3
; a3 = 2d2,average = 2d2,min + ∆d2

∆d2 = a1
√

3
↓
= a1

√
3(

2d2,min

∆d2
+ 1) (38)
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where the values of d2,min and ∆d2 depend on how the actuated P-pair is sized (in Figure 7,
d2,min = d20 and ∆d2 = d1 = 2a1 sinζ+). Formula (38), together with the above-deduced
relationship a4 = 0.5a1, provides the sizes of the 1st decoupled PPS for the chosen values of
τmax, ζmin, τmin, and ζmax.
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3.3. Second Decoupled PPS

Figure 8 illustrates the adopted notations for the kinematic analysis and dimensional
synthesis of the PPS shown in Figure 4b. With reference to Figure 8, d2 is the actuated-joint
variable of the P pair and τ is the transmission angle. The lengths a2, a3, and a4 are the
distances of the S-pair center (point A in Figure 8), respectively, from the tilt-rotation axis,
from the plane perpendicular to the pan-rotation axis that passes through point C, and
from the axis of the second R pair of the RRS limb. Eventually, a5 is the distance between
the axes of the two R pairs of the RRS limb.

The following relationships hold among the above-defined geometric parameters:

d2 = a3 − a2 sin ζ (39a)

τ =
π

2
− ζ (39b)
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3.3.1. Position Analysis of the 2nd Decoupled PPS

Equation (39a) immediately provides the unique IPA solution (i.e., the determination
of d2 for assigned values of the geometric constants and ζ); whereas, for the DPA (i.e., the
computation of ζ for assigned values of the geometric constants and d2), it straightforwardly
gives the following solution formula:

ζ = arcsin
(

a3 − d2

a2

)
(40)

which provides a unique solution for ζ ∈ [−90◦, 90◦].

3.3.2. Dimensional Synthesis of the 2nd Decoupled PPS

Equation (39b) states a linear relationship between the transmission angle, τ, and the
tilt angle, ζ, that does not depend on the geometric constants of the PPS and gives the best
transmission angle (i.e., 90◦) for ζ = 0. Therefore, the best choice is ζmax = −ζmin = 60◦,
which gives τmax = 150◦(= 90◦ + 60◦) and τmin = 30◦(= 90◦ − 60◦). Moreover, since the
geometric constants are not involved in Equation (39b), they can be freely chosen, provided
that the following geometric constraints are satisfied (see Figure 8 and Equation (39a)):

∆d2 = d2,max − d2,min = a2(sin ζmax − sin ζmin)

ζmax = −ζmin = 60◦

↓
= a2

√
3 (41a)

d2,average =
d2,max + d2,min

2
= a3 − a2

sin ζmax + sin ζmin

2

ζmax = −ζmin = 60◦

↓
= a3 (41b)√

∥A0 − O∥2 + a22 ≤ a4 + a5 (41c)

where the values of d2,average and ∆d2 depend on how the actuated P-pair is sized.

4. Discussion and Accuracy Analysis

The above-reported kinematic analyses show that all three PPS architectures have
closed-form solutions to their IPA and DPA, even though the formulas of the spherical PPS
are slightly more cumbersome than those of the other two PPSs. Since the complexity of
the formulas is not a problem when a motion control software uses them, the three selected
architectures are equivalent from the motion control point of view. Of course, the fact
that the spherical PPS has slightly coupled kinematics, which need the motion of both the
actuators to keep the tilt angle fixed when only the pan angle has to change, requires a
motion control software slightly more complex than that of the other two PPSs. Indeed,
the “complexity” simply reduces to satisfying the condition that φ (=(θ2 − θ1)) be constant
(see, Figure 5).

The above-reported dimensional synthesis determined the same optimal values of
ζmin, ζmax, τmin, and τmax (i.e., ζmax = −ζmin = 60◦, τmin = 30◦, and τmax = 150◦) for all of
the three PPSs. Thus, even though the extreme values of the transmission angle are too
far from its optimal value (i.e., τ = 90◦), this drawback is common to all of them, and, in
practice, is acceptable, since the telescope is light and does not carry heavy loads.

In order to complete the comparison among the selected PPSs, the relationships and
sizes determined in the previous section must be used to evaluate the positioning precision
(accuracy) of the additional limbs. Such an evaluation consists of estimating how a possible
error in the actuated-joint variable of the additional limb affects the tilt angle, and it is
implementable as follows.

For the spherical PPS, the differentiation of Equation (8) yields:

dζ =
sinα1(sinα4 cosφ cos ζ − cosα4 sinφ)
sinα4(sinα1 sinφ sin ζ + cosα1 cos ζ)

dφ (42)
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where, in the coefficient that multiplies dφ, ζ is related to φ through Equation (11), whereas
the values of α1 and α4 are the optimal ones determined in the above-reported dimen-
sional synthesis (i.e., α1 = 46.7805◦ = 0.81647 rad and α4 = 57.29578◦ = 1 rad). By replac-
ing the differentials dζ and dφ with the joint-variable errors ∆ζ and ∆φ, respectively, in
Equation (42), and then, by taking the maximum absolute value of the coefficient that
multiplies dφ in Equation (42), Equation (42) leads to the determination of the following
limitation on |∆ζ|:

|∆ζ| ≤ 1.7321 |∆φ| (43)

which proves that, for the spherical PPS, |∆ζ| has the same order of magnitude as |∆φ|.
For the 1st decoupled PPS, the differentiation of Equation (27) yields:

dζ = −

(
d2

a1

)
+ sin ζ(

d2

a1

)
cos ζ +

(
a4

a1

)
sin ζ

d
(

d2

a1

)
(44)

where, in the coefficient that multiplies d(d2/a1), (d2/a1) is related to ζ through
Equation (31), whereas the values of a1 and a4 are the optimal ones determined in the
above-reported dimensional synthesis (i.e., a4 = 0.5a1, a1

√
3 = ∆d2). By replacing the

differentials dζ and d(d2/a1) with the joint-variable errors ∆ζ and ∆(d2/a1), respectively,
in Equation (44), and then, taking the maximum absolute value of the coefficient that
multiplies d(d2/a1), for ζ ∈ [−60◦, 60◦], ∆d2 =

√
3, and d2,min = 0.5a1, in Equation (44),

Equation (44) leads to the determination of the following limitation on |∆ζ|:

|∆ζ| ≤ 2
∣∣∣∣∆(

d2

a1

)∣∣∣∣ (45)

which proves that, for the 1st decoupled PPS, |∆ζ| has the same order of magnitude as
|∆(d2/a1)|.

For the 2nd decoupled PPS, the differentiation of Equation (39a) yields:

dζ = − 1
cos ζ

d
(

d2

a2

)
(46)

where, in the coefficient that multiplies d(d2/a2), ζ is related to (d2/a2) through
Equation (39a). By replacing the differentials dζ and d(d2/a2) with the joint-variable
errors ∆ζ and ∆(d2/a2), respectively, in Equation (46), and then, taking the maximum abso-
lute value of the coefficient that multiplies d(d2/a2), for ζ ∈ [−60◦, 60◦], in Equation (46),
Equation (46) leads to the determination of the following limitation on |∆ζ|:

|∆ζ| ≤ 2
∣∣∣∣∆(

d2

a2

)∣∣∣∣ (47)

which proves that the 2nd decoupled PPS has the same accuracy as the 1st decoupled PPS
with |∆ζ| that has the same order of magnitude as |∆(d2/a2)|.

The comparison of inequalities (45)–(47) shows that the three selected PPSs have
essentially the same accuracy, with the spherical PPS being slightly better. In short, the
kinematic analysis, the dimensional synthesis, and the accuracy analysis do not make any
out of the three PPSs prevail over the remaining two. As a consequence, the fact that the
spherical PPS has the minimum number of links and can actuate the tilt angle by using
a continuous rotation as the input motion leads one to the conclusion that it should be
preferred. Figure 9 shows the 3D CAD model of an RTS actuated through the spherical
PPS with the above-determined sizes (i.e., α2 = 90◦ = π/2 rad, α1 = 46.7805◦ = 0.81647 rad,
and α4 = 57.29578◦ = 1 rad (see Figure 5)), whereas Figures 10 and 11 show the tilt angle, ζ,
and the transmission angle, τ, respectively, as a function of φ (=θ2 − θ1) for the same PPS.
Eventually, the video “video_RTS.mp4” that shows the motion of the 3D CAD model (only
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tilt rotation followed by only pan rotation and, then, combined pan and tilt rotations) is
downloadable from the supplementary materials that accompany this paper.
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5. Conclusions

The literature on parallel pointing systems (PPS) has been reviewed to identify PPS
architectures suitable for actuating robotic total stations (RTS). This review has led to the
selection of three PPS architectures, named “Spherical PPS”, “1st Decoupled PPS”, and
“2nd Decoupled PPS”.

The kinematic analysis, the dimensional synthesis, and the accuracy analysis of the
selected PPS architectures have been addressed in detail in order to compare them. These
studies have yielded the following conclusions: all of them (i) have simple motion control
algorithms based on closed-form formulas, (ii) can be sized so that the telescope of the RTS
can collimate toward any target on the upper hemisphere, and (iii) have a good accuracy.

Even though the three PPSs have comparable performances, the fact that the “Spherical
PPS” has the minimum number of links and can actuate the tilt angle by using a continuous
rotation as the input motion makes it prevail over the remaining two.

Supplementary Materials: The file “video_RTS.mp4”, containing a video of the RTS, shown in Figure 9,
in motion, can be downloaded at https://www.mdpi.com/article/10.3390/machines12010054/s1.
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