
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-022-09591-5

ORIGINAL ARTICLE

Machine learning tools in production engineering

Michael Rom1  · Matthias Brockmann2 · Michael Herty1 · Elisa Iacomini1

Received: 3 March 2022 / Accepted: 21 June 2022
© The Author(s) 2022

Abstract
Machine learning methods have shown potential for the optimization of production processes. Due to the complex relation-
ships often inherent in those processes, the success of such methods is often uncertain and unreliable. Therefore, understand-
ing the (algorithmic) behavior and results of machine learning methods is crucial to improve the prediction of production
processes. Here, mathematical tools may help. This paper shows how efficient algorithms for the training of neural networks
and their retraining in the framework of transfer learning are expressed in a discrete as well as a time-continuous formulation.
The latter can be analyzed and investigated using mathematical techniques from kinetic gas dynamics. The results obtained
provide a first step towards explainable artificial intelligence. Based on the mathematical description, an adapted ensemble
method for retraining of neural networks is proposed and compared with backpropagation algorithms. The process of train-
ing and retraining is a common task and therefore demonstrated for two very different production processes. The first one
involves the prediction of specific cutting forces and the second one the prediction of particle properties in a plasma spraying
coating process. For both use cases, the presented algorithms are applied and their performance is evaluated giving thereby
an indication how mathematically inspired methods improve classical tasks in production processes.

Keywords  Machine learning · Neural networks · Kinetic theory · Process validation · Advanced manufacturing

1  Introduction

In order to operate production systems at an optimum point,
many different process influences need to be taken into
account. These processes usually interact in such a complex
manner that it is not possible to describe the behavior of
production systems in terms of a mathematical model. In
practice, the systems are operated at a set point which was
found to be stable by means of experimental validation.

Modern production systems are equipped with many
built-in sensors and data can be acquired during the manu-
facturing processes. However, these sensors usually cannot
measure primary process variables but mainly state vari-
ables of the machinery, e.g., voltages, switching impulses
or vibrations. In order to make use of these data, models of
the governing physical processes are necessary. The data are
used for validation of these models and need to be adapted to
each reality of interest. In production systems, these realities
of interest are mostly productivity, quality or cost optimiza-
tion. Those optimization targets are in conflict with each
other and companies usually choose their strategy according
to product and the market.

Mathematical algorithms, which can handle this vast
amount of data from the machines, yield a big potential
for improving the optimization of production processes
especially in the field of process validation. Process vali-
dation describes the process of finding an optimum for a
certain machining process. Algorithms can be used for data
regression, interpolation and similarity considerations.
An algorithm needs always to be connected to a method
which reflects the physical relationships of the distinct
manufacturing processes. Methods for use in real production

 *	 Michael Rom
	 rom@igpm.rwth-aachen.de

	 Matthias Brockmann
	 matthias.brockmann@fh-muenster.de

	 Michael Herty
	 herty@igpm.rwth-aachen.de

	 Elisa Iacomini
	 iacomini@igpm.rwth-aachen.de

1	 Institute of Geometry and Applied Mathematics (IGPM),
RWTH Aachen University, Aachen, Germany

2	 Department of Mechanical Engineering, FH Münster,
Münster, Germany

/ Published online: 11 July 2022

The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

http://orcid.org/0000-0002-2963-9081
http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-09591-5&domain=pdf

1 3

environments need to be furthermore robust in terms of data
gaps, noise and spurious correlations. Advanced mathemati-
cal algorithms yield potentials for the development of such
methods.

There exists a vast literature on mathematical models
and numerical algorithms for machine learning, see, for
instance, [1, 2] or literature reviews with respect to machine
learning in production [3–5]. However, an extensive litera-
ture review is beyond the scope of this work.

The main objectives of this work are to demonstrate how
neural network structures can be mathematically analyzed
to gain insight in the sense of explainable artificial intelli-
gence and how mathematical algorithms can improve com-
mon and recurrent tasks such as the training or retraining
of neural networks. Both topics are of high relevance in the
framework of production processes: first, understanding the
black-box behavior of neural networks is desirable to ben-
eficially complement or even replace expensive experiments
or simulations. Second, changing process or material param-
eters require the repeated application of a machine, which in
terms of a machine learning method corresponds to a trans-
fer learning task, see, for instance, [6, 7]. Furthermore, the
present paper aims to discuss the potential advanced math-
ematical algorithms in general and the methods presented
in this work in particular have for production engineering
and to highlight the benefits of such an interdisciplinary
approach.

Our goal regarding transfer learning is the efficient
retraining of an already trained neural network to adapt to
a new data set. We compare the training and retraining of
neural networks by backpropagation with a gradient-free
algorithm using ensemble Kalman filtering. The latter is
also discussed in, e.g., [8–13]. In these works, the ensem-
ble Kalman filtering algorithm is used for training neural
networks, i.e., with a random initialization of weights and
biases. While this is efficient since the method is derivative-
free and parallelizable, convergence may suffer from a
problem called particle collapse and from only providing
an approximation of gradient descent [9]. However, we use
the ensemble Kalman filtering algorithm for the retrain-
ing of neural networks. Hence, the weights and biases
of the network to be retrained are initialized by weights
and biases previously determined for a similar data set.
Consequently, a poor convergence behavior is usually not
an issue in our case. Furthermore, this even allows us to
simplify the formulation of the algorithm. To the authors’
knowledge, the task of retraining of neural networks with
the ensemble Kalman filtering algorithm or a variant of it
has not been studied before.

The basis for the investigations and algorithms in
this work is a special type of residual neural networks
(ResNets) [14]. These are formulated in an amenable form
such that mathematical tools and techniques are applicable.

There have been made several formulations [15–17]. For
example, in [17], the connection of deep convolutional
neural networks to partial differential equations (PDEs) is
derived. In [15], the time-continuous version of a ResNet is
studied and different temporal discretization schemes are
discussed. There are also studies on application of kinetic
methods to ResNets [18–21]. For example, in [20], the
authors consider the limit of infinitely many neurons and
gradient steps in the case of one hidden layer. They are
able to prove a central limit theorem. In this work, we show
results of ResNets in the continuous as well as in the discrete
case for the first time.

By means of two different use cases, we investigate the
performance of the presented machine learning algorithms.
In particular, we demonstrate training and efficient retrain-
ing of ResNets. First, we study the prediction of specific
cutting forces for different materials and compare the results
with measurement data from, e.g., [22]. Second, the parti-
cle behavior in a plasma spraying coating process [23–25]
is predicted based on large simulation data sets. These use
cases stem from cooperations within the DFG project EXC-
2023 “Internet of Production”. They are well suited for the
demonstration of transfer learning algorithms in produc-
tion engineering because they are typical recurrent pro-
cesses underlying constant process or material parameter
adjustments.

The present paper is structured as follows: In Sect. 2,
we present advanced mathematical algorithms based on
ResNets, in particular the ensemble Kalman filtering algo-
rithm for the retraining of ResNets. Section 3 studies the
performance of this retraining algorithm by investigating
two use cases. The potential and increasing importance of
advanced mathematical algorithms in production engineer-
ing is discussed in Sect. 4. Finally, Sect. 5 concludes the
paper and gives an outlook on future work.

2 � Advanced mathematical algorithms

In this section, we present discrete and time-continuous for-
mulations of residual neural networks (ResNets) and show
how a step towards explainable artificial intelligence can be
made. Furthermore, we discuss the training and retraining of
ResNets and describe an algorithm based on backpropaga-
tion and a gradient-free algorithm using ensemble Kalman
filtering.

2.1 � Mathematical formulation of residual neural
networks (ResNets)

Artificial neural networks (ANNs) are multilayer percep-
tron networks. They can be understood as general mapping
of (finitely many) input to output values. The universal

4794 The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

approximation theorem states that given enough layers L
of the network, there exists an ANN for any continuous
mapping [26]. We consider here a particular subclass of
residual neural networks (ResNets). For notational con-
venience, denote by �(0) ∈ ℝ

m the vector of input data and
by �(L) ∈ ℝ

m the output after application of L layers of
the ANN. Also, W(�) ∈ ℝ

m×m and �(�) ∈ ℝ
m , � = 1,… , L ,

are weights matrices and bias vectors, respectively, and
� is a nonlinear activation function. For simplicity, we
have assumed that the weights and biases are of the same
dimension as �. The prediction of a ResNet is given by

In order to derive an amenable formulation for math-
ematical tools, we introduce a pseudo-time. Denote by
Δt > 0 a time step and define for � = 0,… , L

We also scale � as Δt� and the number of layers L as
L∕Δt . In the time-continuous limit, which corresponds to
Δt → 0 , L → ∞ such that LΔt is constant, we obtain

A particular feature of ANNs is the training. Here, usu-
ally a larger number i = 1,… ,N of pairs of input and target
data

(
�
(0)

i
, �i

)N

i=1
 is presented to the ANN and optimal

weights W(�) and �(�) for � = 1,… , L are obtained by mini-
mizing a suitable loss function e(�, �) . An example of a
measure of the deviation is the half mean square error

In terms of the previously defined equations, the train-
ing procedure may be formulated as

where �i(T) denotes the solution to (2) for initial data
�i(0) = �

(0)

i
 . A similar formulation for the discrete problem

(1) is possible. Also, we refer, for instance, to [8–11] for
suitable numerical methods for problem (4).

The formulation (2) can be extended easily to include
also stochastic fluctuations. This modeling assumption is
inspired by stochastic neural networks with stochastic out-
put layers [27–29]. It has been observed that this approach
is useful for the optimization procedure since the random
fluctuations allow to escape from local minima. For a
given family of diagonal positive semi-definite diffusion

(1)�(�) = �(�−1) + �

(
W

(�)T�(�−1) + �(�)
)
, � = 1,… , L.

�(�Δt) = �(�), �(�Δt) = �(�) and W(�Δt) = W
(�).

(2)
{

�̇(t) = 𝜎(W(t) �(t) + �(t)),

�(0) = �(0).

(3)e(�, �) =
1

2
‖� − �‖2

2
.

(4)min
W(⋅),b(⋅)

1

N

N∑

i=1

e(�i(T), �i),

matrix K ∈ ℝ
m×m , a factor 𝜈 > 0 , and a m−dimensional

standard Wiener process dW, the corresponding dynam-
ics reads

Mathematically, the feature of presenting a possibly
large number N of input and target data to the ANN can
be exploited in terms of the mean-field limit [21, 30–33].
Instead of considering input data �(0)

i
 individually, we con-

sider a statistical description of these data. Analytically,
this is justified if the input data are iid random variables.
Furthermore, we assume that the initial distribution of the
input data �(0)

i
, i = 1,… ,N  , is given by a probability dis-

tribution g0(�) ∶ ℝ
m
→ ℝ . Then, the probability density

g(t, �) is obtained as (weak) solution to the Vlasov-Fokker-
Planck-type partial differential equation (PDE)

see [34]. The equation is the mean-field limit of (5) for
N → ∞ initial data. The corresponding loss function
1

N

N∑
i=1

e(�i(T), �i) is obtained on the mean-field level as

where hT (⋅) is the probability distribution of the target data.
For an example, consider the case of finitely many output
data. Then, we have hT (�) = �N

Y
(�) where �N

Y
 is the empirical

measure on the output data:

Rigorous convergence results are available [34] but
beyond the scope of the manuscript. Also note that the
given formulation is by far not the only possibility to
define suitable limits of neural networks and we refer to
[15–20] for further references where, e.g., limits in time
and number of neurons are considered.

The previous reformulation shows that there is an
underlying PDE type structure to be exploited in the
following sections. The derivation is obtained for infi-
nitely many layers L as well as infinitely many input data.
Clearly, this situation is an abstraction of realistic applica-
tions of ResNets and solely done for the purpose of fur-
ther analysis. For practical applications, the correspond-
ing results have again to be discretized and implemented.
Practical examples are presented in Sect. 3.

(5)
{

d�(t) = �(W(t) �(t) + �(t))dt + � KdW,

�(0) = �(0).

(6)

⎧
⎪
⎨
⎪
⎩

�tg(t, �) + ∇� ⋅ (�(W(t)� + �(t))g(t, �))

+
�2

2
∇x ⋅ ∇x

�
K2(�)g(t, �)

�
= 0,

g(0, �) = g0(�),

(7)∫
ℝm ∫ℝm

e(�, �)g(T , �)hT (�)d�d�,

(8)�N
Y
(�) =

1

N

N∑

i=1

m∏

k=1

�(yk − yi,k).

4795The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

2.2 � Towards explainable artificial intelligence

The classification of achievable output states is a typical
question posed on ANNs. In the context of the formulation
(6), a partial answer can be obtained by considering solu-
tions g∞(�) that are the steady states. In the case m ≡ 1 and
K ∈ ℝ,K > 0 for all x ∈ ℝ , this is particularly easy and we
obtain

where C is chosen such that ∫
ℝ
g∞(x)dx = 1, see [34], and

w∞ and b∞ are two constants that parametrize the possible
steady states. The case m = 1 corresponds to input data hav-
ing only a single feature. The characterization through the
steady states (9) now classifies the admissible output data
distributions. Those states still depend on the choice of the
activation function � as well as the choice of the variance
�2 and the diffusion K(x). In the case �(x) = x and K(x) = 1 ,
we obtain, e.g., that g∞ is in fact a Gaussian distribution
showing that the ANN can represent any output data that is
sampled from a Gaussian distribution with given mean and
variance: (𝜇̄, 𝜈̄2) . The latter determine implicitly the choice
of (w∞, b∞). Other distributions can also be obtained and we
refer to [34] for further examples.

2.3 � Fast (re‑)training of neural networks

Given a trained neural network, a typical problem are
changing external conditions. Examples are given for the
prediction of specific cutting forces for different materials
and a plasma spraying coating process in Sect. 3. Here, it
would be advantageous to use a trained neural network for
a single specific geometry as starting point for prediction
under changing geometries or materials without the need
to retrain the complete network. Having a continuous for-
mulation at hand, this problem mathematically is solved by
differentiating the cost functional (7) with respect to target
data hT (⋅) . This in turn requires to differentiate the continu-
ous dynamics (6) to obtain the sensitivities �g

�hT
 . Using

Lagrange multiplier theory, an explicit expression of those
sensitivities is obtained using adjoint variables. Those
allow in turn to obtain suitable updates for the weights and
biases of the neural network.

For a step size 𝜂 > 0 , the updates ΔW of weights and Δ�
of biases are given by

(9)g∞(x;w∞, b∞) =
C

K2(x)
exp

(

∫
ℝ

2�(w∞x + b∞)

�2K2(x)
dx

)
,

(10)

ΔW(t) ∶= −𝜂 ∫
ℝ

g(t, �) � 𝜎̇(W(t)� + �)(t)) 𝜕x𝜆(t, �)d�,

In case of differentiable activation functions, we have
denoted by 𝜎̇ the derivative, otherwise suitable smoothing
needs to be applied or a subdifferential calculus is required
to define the derivative. The previous formula involves the
adjoint state � that formally fulfills

The continuous description allows also for a numeri-
cal implementation by suitable discretization of (6), (10),
(11) and (12). This implies that a single step to update the
weights is obtained by solving two partial differential equa-
tions. Depending on the dimension m of the feature vec-
tor � ∈ ℝ

m , solving the partial differential equations can be
computationally challenging. Furthermore, theoretically,
one needs to solve the previous equations iteratively until
ΔW(t) = 0 and Δ�(t) = � for all t which imposes additional
computational constraints. A detailed discussion on advan-
tages as well as the performance is given in [34]. Here, we
propose two numerical methods for fast retraining.

2.3.1 � Discrete conditions through differentiation

The discrete forward propagation formula (1) allows for an
analytical differentiation provided that � is sufficiently
smooth and the obtained differential can be used to update
weights and biases sequentially. Here, w(�)

ij
 is the entry (i, j)

of the matrix W(�) = W(�Δt) and similarly b(�)
i

 is the ith
entry of the vector �(�) = �(�Δt) . The updates are given by

where 𝜂 > 0 is a given learning rate,

for � = 1,… , L − 1 and

The Eqs. (14)-(16) are derived using direct differentiation
of the error according to (3) and they are presented for the
case K ≡ 0 for simplicity. In case of differentiable activation

(11)Δ�(t) ∶= −𝜂 ∫
ℝ

g(t, �) 𝜎̇(W(t)� + �)(t)) 𝜕x𝜆(t, �)d�.

(12)
�t�(t, �) + �(W(t)� + �(t)) �x�(t, �) −

�2

2
∇x ⋅ ∇xK

2(�)�(t, �) = 0,

(13)�(T , �) = ∫
ℝ

�xe(�, y)hT (y)dy.

(14)Δw
(�)

ij
= −�x

(�−1)

i
�
(�)

j
and Δb

(�)

i
= −��

(�)

i
,

(15)

𝛿
(�)

j
=

(
L∑

n=�+1

m∑

k=1

𝛿
(n)

k
w
(n)

jk

)
𝜎̇

(
m∑

i=1

(
w
(�)

ij
x
(�−1)

i

)
+ b

(�)

j

)

(16)𝛿
(L)

j
=
(
x
(L)

j
− yj

)
𝜎̇

(
m∑

i=1

(
w
(L)

ij
x
(L−1)

i

)
+ b

(L)

j

)
.

4796 The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

functions, we have denoted by 𝜎̇ the derivative, otherwise the
subdifferential in the sense of Clarke [35]. An iterative proce-
dure can be formulated for the previous updates for each set of
new input and target data (�(0)

i
, �i) , i = 1,… ,N . For each value

of this set, the Eqs. (1) and (14)-(16) are computed iteratively
to update the weights and biases until a mean error such as the
root mean square (RMS) error

is sufficiently small for each component, i.e., output quan-
tity, j.

Note that the previous Eqs. (15) and (16) have to be
solved backwards in � , starting at � = L, as in the continu-
ous case where the backward equation for � in Eq. (12) is
employed. Hence, again, an iterative procedure is required
and depending on L and m the computational costs might
be significant. Further note that as in the continuous case
we require at least subdifferentiability of the activation
function.

For the training and retraining examples in Sect. 3, we use
the fully discrete approach.

2.3.2 � Gradient‑free approach for high‑dimensional
problems

An alternative numerical method for high-dimensional opti-
mization has been proposed recently for the fast solution to
inverse problems [9, 11–13] using Kalman filtering [36]. The
proposed and analyzed method uses the ensemble Kalman
filter and has the advantages of being a purely primal method
and of not relying on derivatives. In particular in the context
of retraining, this is appealing since the activation function is
in many cases non-differentiable. Furthermore, a primal
method does not need to rely on solving backward equations
for updating � or �(�)

j
 as shown in the previous section. We

therefore briefly present the application of ensemble Kalman
filtering for (re)training weights and biases of a neural
network.

First, we define an initial ensemble of NJ particles, i.e., state
vectors, by sampling from a normal distribution N(�init, �cId) ,
where �init and �cId are the mean and the covariance matrix of
the distribution, respectively. Here, �c is a parameter and Id
denotes the identity matrix with d the dimension of the vector
�init . The state vector �init contains the initial weights w(�)

i,j
 and

biases b(�)
i

 of a neural network with layers � = 1,… , L and
i, j = 1,… ,m nodes. Note the dimension of each ensemble
member

(17)eRMS,j =

√√√√ 1

2N

(
N∑

i=1

(
yi,j − x

(L)

i,j

)2

)
, j ∈ {1,… ,m}

�j ∈ ℝ
L(m2+m), j ∈ {1,… ,NJ}

in the presented case. Hence, the total dimension of
unknowns to be updated by the filter is NJL(m

2 + m) which
can be significantly larger than any number of unknowns
within a suitable discretization of the continuous model (12).

For the initialization, random values or, if available,
weights and biases of an already trained neural network
can be used. The latter allows for an efficient retraining of
a neural network to adapt the existing weights and biases
to new input and/or target values. Then, retraining by an
ensemble Kalman filter is an iterative process.

An ensemble of NJ particles is denoted by � ∶=
{
�j
}NJ

j=1
 .

Its empirical covariance matrix is given by

where G
(
�(0), �j

)
 denotes a function which, depending on

an input �(0) and a particle �j , computes an output. In the
following, G is the forward propagation of a residual neural
network given by (1) on the discrete level or by a discre-
tization of Eq. (6) for the continuous case. Hence, for an
input �(0) , respectively g0(�) , chosen from a training set and
weights and biases stored in the particle �j , the output of
G
(
�(0), �j

)
 is �(L) , respectively �(T) . The mean values Ḡ and

�̄ are computed by

The update of a particle �j is determined by adding

where � is the target corresponding to the input �(0) and
Γ∗ ∈ ℝ

m×m denotes a covariance matrix. Note that in other
works, e.g., [9, 11], Γ∗ =

(
D(�) + Γ−1

)−1 , where D(�) is the
covariance matrix

and Γ is the covariance matrix of the measurement noise.
In case of retraining of neural networks, Γ is unknown and
therefore, as a simplification, we use Γ∗ as an algorithmic
parameter. With the updated particles, the next iteration of
the (re)training algorithm starts with the forward propaga-
tion G

(
�(0), �j

)
 for a new input �(0) randomly chosen from

the training data set to compute (18). For a fast convergence
of this algorithm, increasing the norm of the covariance
matrix Γ∗ with each iteration has turned out to be a suc-
cessful choice provided that the norm stays bounded. This
avoids the effect of the collapse of particles, see [9], which
refers to the convergence of all particles to the same set of

(18)C(�) =
1

NJ

NJ∑

j=1

(
�j − �̄

)
⊗

(
G
(
�(0), �j

)
− Ḡ

)
,

(19)Ḡ =
1

NJ

NJ∑

j=1

G
(
�(0), �j

)
, �̄ =

1

NJ

NJ∑

j=1

�j.

(20)Δ�j = C(�)Γ∗
(
� − G

(
�(0), �j

))
,

(21)D(�) =
1

NJ

NJ∑

j=1

(
G
(
�(0), �j

)
− Ḡ

)
⊗

(
G
(
�(0), �j

)
− Ḡ

)

4797The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

weights and biases while the training error is still large. The
algorithm is run until a mean error such as the root mean
square (RMS) error (17) is below a given tolerance.

3 � Use cases

In this section, we apply ResNets to two different use cases:
the prediction of (i) specific cutting forces and (ii) a plasma
spraying coating process. In addition, we compare the
retraining algorithms presented above.

3.1 � Prediction of specific cutting forces

For obtaining a high workpiece quality from a cutting pro-
cess, the accurate prediction of cutting forces is crucial. A
wide range of parameters such as the cutting material prop-
erties, the cutting wedge geometry, the cutting speed or the
chip thickness influences the cutting forces. At the Labora-
tory for Machine Tools and Production Engineering (WZL)
at RWTH Aachen University, tables containing the specific
cutting forces for a large number of materials are available.
These tables were gathered in extensive investigations, for
instance, by Kienzle and Victor [22]. With only a few of the
mentioned parameters, a ResNet can be trained being capa-
ble of accurately predicting the specific cutting forces for a
selected material. Using the ensemble Kalman filter (EnKF)
retraining method introduced in Sect. 2.3.2, this ResNet can
be efficiently adapted for the prediction of specific cutting
forces for further materials. This will be demonstrated exem-
plarily in the following for two materials arbitrarily chosen
from the WZL tables. For further results, we refer to [37].

3.1.1 � Training a ResNet for material C35G

For the training of a ResNet, we choose three input quanti-
ties, namely the chip thickness h, the rake angle � and the
cutting speed v. The target quantity to be predicted by the
ResNet is the specific cutting force ks . For the material
C35G, 91 data points are available. For the training of the
ResNet, 51 of these data points are randomly chosen such
that 40 data points remain for testing the resulting network.

Table 1 lists the first five of the test data points, correspond-
ingly to Fig. 1 described below, to give an idea of the struc-
ture of the data. The training is terminated when the RMS
error eRMS,1 according to (17) is smaller than 3%. The chosen
parameters are L = 11 , i.e., ten hidden layers, hyperbolic
tangent as activation function � and � = 0.01 for the learn-
ing rate.

After the training, the prediction for the 40 test data
points is computed by forward propagation with the trained
weights and biases. The result is plotted in Fig. 1 together
with the target values. It is obvious that a high prediction
accuracy has been achieved. This is substantiated by a small
RMS error of 5.8%.

3.1.2 � Retraining by backpropagation or EnKF for material
9SMnPb36

For the prediction of the specific cutting forces of another
material, here 9SMnPb36, the weights and biases of the
trained network have to be adapted due to the changed mate-
rial properties. The input values for the three input quantities
h, � and v are exactly the same as for C35G, only the specific
cutting forces ks (targets) differ. Hence, the setting is similar
such that starting the training of a new ResNet by initializ-
ing its weights and biases with the already determined ones

Table 1   Exemplary input and
target data for material C35G

Data pt. Chip thickness h Rake angle � Cutting speed v Spec. cutting force k
s

[mm] [◦] [m/min] [N/mm2]

1 1 15 25 1919
2 1 -6 200 1720
3 0.4 6 200 1793
4 0.8 6 100 1546
5 0.63 6 200 1581
⋮ ⋮ ⋮ ⋮ ⋮

Fig. 1   Prediction of specific cutting forces k
s
 of material C35G for 40

test data points after training by backpropagation

4798 The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

from the C35G case instead of using random values leads
to a reduced training time. This procedure is called retrain-
ing. For a comparison of runtimes and prediction accuracy,
the retraining is carried out by both the backpropagation
algorithm of the ResNet according to (14-16) and the EnKF
algorithm according to (18-20).

Since existing weights and biases are adapted, the result-
ing ResNet must have the same number of layers, in this
case L = 11 . For the retraining by backpropagation, the
other two parameters are also chosen to stay the same, i.e.,
hyperbolic tangent as activation function � and � = 0.01 for
the learning rate. The parameters for the retraining with the
EnKF are set to be NJ = 100 particles (ensemble size) and
�c = 0.01 . Since the measurement noise is unknown, we use
the covariance matrix Γ∗ and set Γ∗ = n , where n denotes the
current number of the iteration such that Γ∗ is successively
increased. Note that Γ∗ is a scalar here because there is only
one output quantity. For the retraining, again 51 of the 91
data points available for 9SMnPb36 are arbitrarily selected
such that 40 data points are left for testing. The retraining is
terminated when eRMS,1 is smaller than 3%

The results of forward propagation for the 40 test data
points after retraining by backpropagation or EnKF are
depicted in Fig. 2. Note that the plot uses the same scale
on the y-axis for the specific cutting force ks as Fig. 1 to
demonstrate the significant difference in the target val-
ues compared with the C35G case. However, the predic-
tions computed after retraining again show a high accu-
racy. The RMS errors are 5.5% and 4.8% for the network

retrained by backpropagation and the one retrained by EnKF,
respectively.

The computation time for the retraining by back-
propagation is 78.6 s. The convergence behavior of the
EnKF algorithm is influenced by the normal distribution
N(�init, �cId) and the random choice of the input vector
�(0) and the corresponding target vector � in each iteration
of the retraining. Hence, Table 2 contains the computa-
tion times and RMS errors of ten runs of the retraining
by EnKF for 9SMnPb36. The computation time varies
between 17.7 and 29.8 s which corresponds to a speed-up
of 2.6 to 4.4 compared with the retraining by backpropa-
gation. On average (23.4 s), the speed-up is 3.4. Together
with the RMS errors ( 3.9% to 5.2% ), which are smaller
than the RMS error of the network retrained by back-
propagation ( 5.5% ) for all ten runs, this demonstrates the
high suitability of the EnKF for retraining the weights and
biases of a neural network.

3.1.3 � Dependence of prediction accuracy on number
of training points

For training and retraining the ResNets in the previous
sections, we have used N = 51 data points. Now, we inves-
tigate the dependence of the accuracy of the prediction
of a (re)trained net on N in the case of the cutting forces.
Since gathering training data, e.g., from experiments, is
often expensive, N should be kept as small as possible
to reduce costs. In the following, we do the training for
C35G and the retraining for 9SMnPb36 as before but for
each N ∈ {1,… , 51} . After that, the trained or retrained
ResNets are tested with the same 40 data points as before
and the RMS error eRMS,1 for the prediction of these test
data is computed. Note that each retraining is initialized
with the weights and biases determined in Sect. 3.1.1.

The results for the errors are plotted in Fig. 3. The
behavior for the three cases, i.e., ResNets trained for C35G
and retrained for 9SMnPb36 by backpropagation or EnKF,
is similar. As expected, for small values of N with approxi-
mately N < 15 , the resulting ResNets lead to inaccurate
predictions with errors larger than 20% . For N > 35 , all
errors are below 10% , which is sufficient for the application
at hand. With 36 training points, eRMS,1 is 7.9% (C35G),
5.3% (9SMnPb36, retrained by backpropagation) and 4.4%
(9SMnPb36, retrained by EnKF).

Fig. 2   Prediction of specific cutting forces k
s
 of material 9SMnPb36

for 40 test data points after retraining by backpropagation or EnKF

Table 2   Computation times of the EnKF retraining algorithm and resulting RMS errors for the cutting force test data for ten runs

Run 1 2 3 4 5 6 7 8 9 10 Average

time [s] 21.1 26.4 27.2 22.8 21.8 29.8 26.5 17.7 20.8 20.2 23.4
error [%] 4.8 3.9 4.8 4.8 4.8 5.2 5.2 4.6 5.2 4.8 4.8

4799The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

3.2 � Prediction of the plasma spraying coating
process

At the Surface Engineering Institute (IOT) at RWTH Aachen
University, models for the simulation of plasma spraying are
developed [23, 24]. Plasma spraying is a coating process,
where a powder is fed into a plasma jet which melts the
powder and transports the particles towards a substrate with
a high velocity. Due to a large number of influencing param-
eters and the turbulent flow behavior, the optimization of this
coating process is time-consuming and expensive. The goal
is to establish a digital twin of the simulation process which
significantly reduces the computation time while still suf-
ficiently predicting the general behavior of the particles. An
approach for training a ResNet similar to the one presented
in the following and a comparison of ResNet results with
results of a support vector machine can be found in [25].
Further ResNet results are also available in [37].

3.2.1 � Data preparation

At the IOT, recently 45 simulations were carried out, where
for each simulation five input quantities, namely primary gas
flow rate, electric current, carrier gas flow rate, powder feed
rate and stand-off distance of the substrate from the particle

injector, were fixed and only one input quantity, namely the
grain size of the powder particles, was varied in a fixed inter-
val, either 15–35 µm, 35–55 µm or 55–75 µm. Exemplarily,
input data of four simulations are listed in Table 3. Since
each of the 45 simulations contains between 1,500 and 2,000
particles, a large dataset of more than 85,000 data points is
available. The output quantities of the simulations are the
particle coordinates x and z on the substrate, which is a plane
at a fixed position y, and the particle in-flight temperatures
and velocities T and v, respectively.

For training and testing a ResNet, we use 1,000 and
10,000 data points, respectively, randomly chosen from 20
simulations. For the subsequent retraining of the determined
weights and biases by backpropagation or EnKF and testing
the retrained networks, the same numbers of data points are
randomly chosen from another 20 simulations.

3.2.2 � Training a ResNet

With data for the six input quantities mentioned above, a
ResNet is trained to predict the four output quantities x, z, T
and v. The chosen parameters are L = 6 (five hidden layers),
learning rate � = 0.0001 and hyperbolic tangent as activation
function � . Due to the rather chaotic particle behavior which
is caused by the turbulence of the flow and collisions of the
powder particles, an accurate prediction of the coordinates,
temperatures or velocities of single particles cannot be
expected. This would only be possible if these effects were
accounted for by the input quantities, but information on the
turbulence of each particle is obviously not available when
applying the trained ResNet to a new setting. However, the
network should be capable of learning the average particle
behavior. The training is stopped when the average RMS
error ēRMS = (

∑nO
j=1

eRMS,j)∕nO , cf. (17), where nO = 4 is the
number of output quantities, is smaller than 22% as this
value has turned out to be close to the minimum error pos-
sible in this case.

For an easier identification of physical relations, e.g., a
decreasing velocity with increasing particle size, in the plots
of the results, all data are sorted according to the input parti-
cle (grain) size after testing as depicted in Fig. 4. The hori-
zontal lines mark the used grain size distributions: for each

Fig. 3   RMS error eRMS,1 of the prediction of specific cutting forces k
s

for 40 test data points dependent on the number of data points used
for training or retraining

Table 3   Exemplary input data
for plasma spraying

Sim. Primary gas Electric Carrier gas Powder feed Stand-off Grain sizes
Flow [SLPM] Current [A] Flow [SLPM] Rate [g/min] Dist. [mm] [µm]

1 40.36 461.6 6.39 28.8 126 15–35
2 40.36 532.9 5.72 15.6 153 15–35
3 41.37 473.8 4.04 12.0 169 15–35
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

45 59.87 470.3 4.04 18.0 144 55–75

4800 The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

of the 45 simulations by the IOT, the sizes of the input par-
ticles are 15–35 µm, 35–55 µm or 55–75 µm, see above and
Table 3. Since the 10,000 data points were chosen randomly
from 20 simulations, the numbers of data points per grain
size interval differ: there are approximately 5,500, 2,000
and 2,500 particles for the grain sizes 15–35 µm, 35–55 µm
and 55–75 µm, respectively, for testing the trained network.
These numbers amount to approximately 2,000, 4,000 and
4,000 for testing the retrained networks.

The results of the forward propagation of the 10,000 test
data points for the in-flight particle velocity v are shown in
Fig. 5. The division into three parts corresponding to the
input particle sizes is clearly visible. The prediction of the
ResNet is less widespread than the spread of the targets. The
turbulence of the flow leads to the effect that the velocities
of two particles of the same size can differ significantly. The
same holds for the particle temperature T and the coordi-
nates x and z on the substrate. For the training of a ResNet,

this corresponds to input values of two particles being the
same while the targets differ. Hence, only the average value
is learned in such a case. However, the trend of the velocity
(decreasing with increasing grain size) and the three mean
values according to the three grain size intervals 15–35
µm, 35–55 µm and 55–75 µm are accurately reproduced
by the ResNet trained by backpropagation. In Fig. 5, target
mean refers to the mean value of all target values inside the
particular grain size interval and output mean is the cor-
responding mean value of all predictions. The deviations
of the output mean values from the target mean values are
0.74% (15–35 µm), 0.35% (35–55 µm) and 0.26% (55–75
µm). With 21.9%, the average RMS error for the test data is
even slightly lower than the one for the training data ( 22% ,
see above).

3.2.3 � Retraining by backpropagation or EnKF

In contrast to the cutting force case in Sect. 3.1.2, here the
input values for training and retraining differ, cf. Fig. 4. The
parameters for the retraining by backpropagation are set
to be the same as for the training, i.e., L = 6 , � = 0.0001
and hyperbolic tangent. For the retraining by EnKF, we
use NJ = 150 particles (ensemble size), �c = 0.005 and
Γ∗ = 0.8nI4 . With both methods, a minimum average RMS
error ēRMS = 20.6% can be obtained by the retraining.

The results of the forward propagation after retraining for
the in-flight particle temperature T in Fig. 6 and for the particle
coordinate x in Fig. 7 are of similar quality as the result after
the initial training in Fig. 5 for the particle velocity v. Again,
the division into three parts according to the three grain size
intervals is visible, this time corresponding to the input data
for retraining depicted in Fig. 4. Qualitatively, the predictions
for the test data after retraining by backpropagation are similar
to those after retraining by EnKF. As expected and described
above, the prediction of the widespread single particle

Fig. 4   Input particle (grain) size for testing the trained and retrained
networks

Fig. 5   Prediction of in-flight particle velocity v for 10,000 test data
points after training by backpropagation

Fig. 6   Prediction of in-flight particle temperature T for 10,000 test
data points after retraining by backpropagation or EnKF

4801The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

temperatures and coordinates is not possible due to the missing
turbulence information. The average RMS errors regarding the
test data are 21.4% for both methods. With increasing particle
size, the temperature T tends to decrease and the coordinate x
tends to increase. This behavior and the mean values, which
are analogously computed to those in Fig. 5, are well reflected
by the retrained networks. The deviations of the output mean
values from the target mean values for the temperature are
0.97% and 1.55% (15–35 µm), 0.64% and 1.47% (35–55 µm)
and 1.49% and 2.11% (55–75 µm), each for the test after
retraining by backpropagation and by EnKF, respectively.
Hence, the retraining by EnKF in this case leads to slightly
larger deviations regarding the predicted mean values. How-
ever, a maximum deviation of 2.11% is clearly acceptable.

The computation time needed for retraining by backpropa-
gation is 530.6 s. Table 4 lists ten runtimes for the retraining by
EnKF. The speed-up lies between 2.0 and 3.8 with an average
speed-up of 2.8. This again shows that using the EnKF for
retraining the weights and biases of a neural network can lead
to a significant reduction of computation time.

In summary, the results of the training and retraining show
that a neural network is a suitable replacement for the simu-
lation of the thermal spraying process when it comes to the
prediction of the general particle behavior. While the average
time needed for one simulation is about 3 h, the (re)training
of a neural network only needs a few minutes, and the forward
propagation with an already (re)trained network takes less than
a second.

4 � Discussion of potential for production
engineering

Advanced mathematical algorithms such as shown in
the previous sections can be integrated into standardized
approaches for process validation, model-based process
monitoring, control and quality predictions. The algorithms
presented in this paper enhance common approaches of
machine learning algorithms by means of development of
new mathematical approaches. For an industrial usage, the
application of algorithms needs to be validated with specific
machining processes. Investigations showed that the perfor-
mance of a specific algorithm is dependent on the use [38].
This could be related to the governing physical causali-
ties and the underlying mathematical nature of the distinct
processes. Once those relations are understood, an optimal
algorithm for a specific problem can be recommended. Fur-
thermore, data from physically similar processes could be
used to retrain the models for new processes (transfer learn-
ing algorithms).

For the most manufacturing processes, advanced math-
ematical algorithms and machine learning can be applied to
handle the vast amount of data currently unused for produc-
tion. Automated approaches for feedback and learning (for
instance, described in [39]) can be enhanced with algorithms
such as presented in this paper. This can be used for con-
trol loops with focus on quality prediction or productivity
or process validation. This initial validation of the process
ensures mass production and is one of the most critical and
cost-intensive processes in manufacturing.

For the manufacturing of high-integrity parts, this valida-
tion is furthermore certified from the respective authorities.
If high-integrity parts fail, usually the whole system fails and
hazards for the environment and human beings occur. As an
example, blisks in aero engines are classified as critical parts
and process validation is a highly cost-intensive process.
Furthermore, this approach results in static processes which
are not changed over time, i.e., new methodologies or tools
can not be used for optimization. New approaches are very
rare and mostly in research context (see [40]) rather than
in real production environment. In these industries, how-
ever, data are collected throughout the whole manufacturing
process and stored due to warranty reasons. These stored
data, e.g., the cutting force data like shown in this paper,
can be used for predictions of new processes with the help

Fig. 7   Prediction of particle coordinate x on substrate for 10,000 test
data points after retraining by backpropagation or EnKF

Table 4   Computation times of the EnKF retraining algorithm and resulting average RMS errors for the thermal spraying test data for ten runs

Run 1 2 3 4 5 6 7 8 9 10 Average

time [s] 183.0 138.3 261.6 158.3 206.9 157.0 171.1 254.3 202.5 155.7 188.9
error [%] 21.5 21.4 21.5 21.5 21.4 21.4 21.4 21.4 21.5 21.4 21.4

4802 The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

1 3

of advanced mathematical algorithms. While in the manu-
facturing of high-integrity parts, the demanded quality is
the main objective, mass production industries such as car
manufacturing are more concerned with cost and energy
optimization [41]. However, the methods for process vali-
dation can be used in the same way, only with other target
variables (for instance, minimizing the occurring cutting
force while ensuring quality). For future applications and
digitalized manufacturing environments, the importance of
algorithms for data analytics will increase [42]. The algo-
rithms presented in this paper have shown a high potential
for usage in their respective field of application.

5 � Conclusion

In this paper, we have shown how mathematical techniques
may be applied to machine learning methods to investigate
the algorithmic behavior of those methods and therefore
help improve their performance. Residual neural networks
(ResNets) as stated in this work allow for a mathematical
analysis by setting up a time-continuous formulation. By
exploiting their underlying structure, which is of the type of
a partial differential equation (PDE), properties of a ResNet
regarding their convergence behavior or possible outcome
can be proven. This is possible at least for simple cases such
as a single-input ResNet.

Advanced mathematical algorithms such as the ensem-
ble Kalman filtering (EnKF) accelerate common tasks. In
particular, the computation time for the retraining of neural
networks can be significantly reduced if the frequently used
backpropagation algorithm is replaced by the EnKF algo-
rithm. The latter is parallelizable being a crucial advantage
for its efficiency. However, even without this parallelization,
we observed speed-up factors between 2.0 and 4.4 for our
two use cases. For recurrent tasks, such an acceleration saves
(training) time and therefore also costs. The predictions of a
ResNet retrained by the EnKF algorithm are of similar accu-
racy as the ones of a ResNet retrained by backpropagation,
even with the simplified covariance matrix Γ∗ introduced in
this work.

In production engineering, the availability of adequate
data is often not a problem but their profitable use is. As
more and more data become available due to an increas-
ing number of digitalized manufacturing environments, the
importance of the application of advanced mathematical
algorithms in order to use the data increases. The mathe-
matical analysis of machine learning algorithms is necessary
to understand and improve algorithms. In combination with
more available data, this results in an interdisciplinary task.

Up to now, properties of neural networks are only math-
ematically rigorously proven for simple networks. Hence,
further studies are necessary starting from the presented

networks. As example, the use case of the plasma spray-
ing process has shown that a neural network is capable of
predicting the average particle behavior. However, for the
accurate prediction of the behavior of each single particle,
an advanced approach such as a physics-informed neural
network [43] has to be applied, linking a neural network to
the governing equations of the process.

Acknowledgements  The authors thank S. R. Dokhanchi, H. Heinemann
and W. Wietheger (Surface Engineering Institue (IOT), RWTH Aachen
University) for providing the plasma spraying data.

Funding  Open Access funding enabled and organized by Projekt
DEAL. Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
im Rahmen der Exzellenzstrategie des Bundes und der Länder – EXC-
2023 Internet of Production - 390621612. Funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC-2023 Internet of Production -
390621612. Funding through HIDSS-004 is acknowledged.

Availability of data and material  Not applicable.

Code availability  Not applicable.

Declarations 

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Jordan MI, Mitchell TM (2015) Machine learning: Trends, per-
spectives, and prospects. Science 349(6245):255–260

	 2.	 Joshi AV (2019) Machine Learning and Artificial Intelligence.
Springer

	 3.	 Kang Z, Catal C, Tekinerdogan B (2020) Machine learning appli-
cations in production lines: A systematic literature review. Com-
put Ind Eng 149:106773

	 4.	 Usuga Cadavid JP, Lamouri S, Grabot B, Pellerin R, Fortin A
(2020) Machine learning applied in production planning and

4803The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

http://creativecommons.org/licenses/by/4.0/

1 3

control: a state-of-the-art in the era of industry 4.0. J Intell Manuf
31:1531–1558

	 5.	 Weichert D, Link P, Stoll A, Rüping S, Ihlenfeldt S, Wrobel S
(2019) A review of machine learning for the optimization of pro-
duction processes. Int J Adv Manuf Technol 104:1889–1902

	 6.	 Maschler B, Braun D, Jazdi N, Weyrich M (2021) Transfer learn-
ing as an enabler of the intelligent digital twin. Procedia CIRP
100:127–132

	 7.	 Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer
learning. J Big Data 3:9

	 8.	 Haber E, Lucka F, Ruthotto L (2018) Never look back - A modi-
fied EnKF method and its application to the training of neural
networks without back propagation. Preprint arXiv:​1805.​08034

	 9.	 Kovachki NB, Stuart AM (2019) Ensemble Kalman inversion: a
derivative-free technique for machine learning tasks. Inverse Probl
35(9):095005

	10.	 Watanabe K, Tzafestas SG (1990) Learning algorithms for neural
networks with the Kalman filters. J Intell Robot Syst 3(4):305–319

	11.	 Yegenoglu A, Diaz S, Krajsek K, Herty M (2020) Ensemble
Kalman filter optimizing deep neural networks. In Conference
on Machine Learning, Optimization and Data Science, volume
12514. Springer LNCS Proceedings

	12.	 Iglesias M, Law K, Stuart AM (2013) Ensemble Kalman methods
for inverse problems. Inverse Prob 29(4):045001

	13.	 Schillings C, Stuart AM (2017) Analysis of the Ensemble Kalman
Filter for Inverse Problems. SIAM J Numer Anal 55(3):1264–1290

	14.	 He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for
image recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778

	15.	 Chen TQ, Rubanova Y, Bettencourt J, Duvenaud DK (2018) Neu-
ral ordinary differential equations. In Advances in neural informa-
tion processing systems, pages 6571–6583

	16.	 Lu Y, Zhong A, Li Q, Dong B (2018) Beyond finite layer neural
networks: Bridging deep architectures and numerical differential
equations. In J. Dy and A. Krause, editors, 35th International
Conference on Machine Learning, ICML 2018, 35th International
Conference on Machine Learning, ICML 2018, pages 5181–5190.
International Machine Learning Society (IMLS), 2018. 35th Inter-
national Conference on Machine Learning, ICML 2018 ; Confer-
ence date: 10-07-2018 Through 15-07-2018

	17.	 Ruthotto L, Haber E (2020) Deep neural networks motivated by
partial differential equations. J Math Imaging Vis 62:352–364

	18.	 Araújo D, Oliveira RI, Yukimura D (2019) A mean-field limit for
certain deep neural networks. arXiv preprint arXiv:​1906.​00193

	19.	 Mei S, Montanari A, Nguyen P-M (2018) A mean field view of
the landscape of two-layer neural networks. Proc Natl Acad Sci
115(33):E7665–E7671

	20.	 Sirignano J, Spiliopoulos K (2019) Mean field analysis of neural
networks: A central limit theorem. Stochastic Processes and their
Applications

	21.	 Trimborn T, Gerster S, Visconti G (2020) Spectral methods to
study the robustness of residual neural networks with infinite lay-
ers. Found Data Sci 2(3):257–278

	22.	 Kienzle O, Victor H (1957) Spezifische Schnittkräfte bei
der Metallbearbeitung. Werkstofftechnik und Maschinenbau
47(H5):224–225

	23.	 Bobzin K, Öte M (2017) Modeling plasma-particle interaction in
multi-arc plasma spraying. J Therm Spray Technol 26:279–291

	24.	 Bobzin K, Öte M, Schein J, Zimmermann S (2017) Numerical
study on plasma jet and particle behavior in multi-arc plasma
spraying. J Therm Spray Technol 26:811–830

	25.	 Bobzin K, Wietheger W, Heinemann H, Dokhanchi SR, Rom
M, Visconti G (2021) Prediction of particle properties in plasma
spraying based on machine learning. J Therm Spray Technol
30:1751–1764

	26.	 Lin H, Jegelka S (2018) Resnet with one-neuron hidden layers is
a universal approximator. NIPS’18, page 6172–6181, Red Hook,
NY, USA, 2018. Curran Associates Inc

	27.	 Goldberger J, Ben-Reuven E (2017) Training deep neural-networks
using a noise adaptation layer. In ICLR

	28.	 Noh H, You T, Mun J, Han B (2017) Regularizing deep neural
networks by noise: Its interpretation and optimization. In Guyon
I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S,
Garnett R, editors, Advances in Neural Information Processing
Systems 30, pages 5109–5118. Curran Associates, Inc., 2017

	29.	 Tran D, Dusenberry MW, Wilk MVD, Hafner D (2019) Bayesian
layers: A module for neural network uncertainty. In NeurIPS

	30.	 Carrillo JA, Fornasier M, Toscani G, Vecil F (2010) Mathemati-
cal Modeling of Collective Behavior in Socio-Economic and Life
Sciences, chapter Particle, kinetic, and hydrodynamic models of
swarming, pages 297–336. Modeling and Simulation in Science,
Engineering and Technology. Birkhäuser Boston

	31.	 Golse F (2016) On the dynamics of large particle systems in the
mean field limit. In Macroscopic and large scale phenomena:
coarse graining, mean field limits and ergodicity, pages 1–144.
Springer

	32.	 Ha S-Y, Jin S, Kim D (2020) Convergence of a first-order consensus-
based global optimization algorithm. Math Models Methods Appl
Sci 30(12):2417–2444

	33.	 Jabin P-E (2014) A review of the mean field limits for Vlasov
equations. Kinetic & Related Models 7(4):661–711

	34.	 Herty M, Trimborn T, Visconti G (2022) Mean-field and kinetic
descriptions of neural differential equations. Found Data Sci
4(2):271–298

	35.	 Clarke FH (1990) Optimization and Nonsmooth Analysis. SIAM
	36.	 Kalman RE (1960) A new approach to linear filtering and predic-

tion problems. ASME J Basic Eng T
	37.	 Herty M, Rom M, Visconti G (2021) Einsparung kostenintensiver

Experimente und Simulationen durch Maschinelles Lernen. In
D. Trauth, T. Bergs, and W. Prinz, editors, Monetarisierung von
technischen Daten - Innovationen aus Industrie und Forschung,
pages 691–709, Springer Vieweg

	38.	 Mayr A, Kißkalt D, Meiners M, Lutz B, Schäfer F, Seidel R,
Selmaier A, Fuchs J, Metzner M, Blank A, Franke J (2019)
Machine learning in production - Potentials, challenges and exem-
plary applications. Procedia CIRP 86:49–54

	39.	 Denkena B, Dittrich M-A, Wilmsmeier S (2019) Automated pro-
duction data feedback for adaptive work planning and production
control. Procedia Manufacturing 28:18–23

	40.	 Fricke K, Gierlings S, Ganser P, Venek T, Bergs T (2020) Geom-
etry model and approach for future blisk LCA. IOP Conf Ser
Mater Sci Eng 1024:012067

	41.	 Giampieri A, Ling-Chin J, Ma Z, Smallbone A, Roskilly AP
(2020) A review of the current automotive manufacturing practice
from an energy perspective. Appl Energy 261:114074

	42.	 de Man JC, Strandhagen JO (2017) An Industry 4.0 research
agenda for sustainable business models. Procedia CIRP
63:721–726

	43.	 Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. J Comput Phys 378:686–707

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

4804 The International Journal of Advanced Manufacturing Technology (2022) 121:4793–4804

https://arxiv.org/abs/1805.08034
https://arxiv.org/abs/1906.00193

	Machine learning tools in production engineering
	Abstract
	1 Introduction
	2 Advanced mathematical algorithms
	2.1 Mathematical formulation of residual neural networks (ResNets)
	2.2 Towards explainable artificial intelligence
	2.3 Fast (re-)training of neural networks
	2.3.1 Discrete conditions through differentiation
	2.3.2 Gradient-free approach for high-dimensional problems

	3 Use cases
	3.1 Prediction of specific cutting forces
	3.1.1 Training a ResNet for material C35G
	3.1.2 Retraining by backpropagation or EnKF for material 9SMnPb36
	3.1.3 Dependence of prediction accuracy on number of training points

	3.2 Prediction of the plasma spraying coating process
	3.2.1 Data preparation
	3.2.2 Training a ResNet
	3.2.3 Retraining by backpropagation or EnKF

	4 Discussion of potential for production engineering
	5 Conclusion
	Acknowledgements
	References

