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Abstract
Machine learning methods have shown potential for the optimization of production processes. Due to the complex relation-
ships often inherent in those processes, the success of such methods is often uncertain and unreliable. Therefore, understand-
ing the (algorithmic) behavior and results of machine learning methods is crucial to improve the prediction of production 
processes. Here, mathematical tools may help. This paper shows how efficient algorithms for the training of neural networks 
and their retraining in the framework of transfer learning are expressed in a discrete as well as a time-continuous formulation. 
The latter can be analyzed and investigated using mathematical techniques from kinetic gas dynamics. The results obtained 
provide a first step towards explainable artificial intelligence. Based on the mathematical description, an adapted ensemble 
method for retraining of neural networks is proposed and compared with backpropagation algorithms. The process of train-
ing and retraining is a common task and therefore demonstrated for two very different production processes. The first one 
involves the prediction of specific cutting forces and the second one the prediction of particle properties in a plasma spraying 
coating process. For both use cases, the presented algorithms are applied and their performance is evaluated giving thereby 
an indication how mathematically inspired methods improve classical tasks in production processes.

Keywords Machine learning · Neural networks · Kinetic theory · Process validation · Advanced manufacturing

1 Introduction

In order to operate production systems at an optimum point, 
many different process influences need to be taken into 
account. These processes usually interact in such a complex 
manner that it is not possible to describe the behavior of 
production systems in terms of a mathematical model. In 
practice, the systems are operated at a set point which was 
found to be stable by means of experimental validation.

Modern production systems are equipped with many 
built-in sensors and data can be acquired during the manu-
facturing processes. However, these sensors usually cannot 
measure primary process variables but mainly state vari-
ables of the machinery, e.g., voltages, switching impulses 
or vibrations. In order to make use of these data, models of 
the governing physical processes are necessary. The data are 
used for validation of these models and need to be adapted to 
each reality of interest. In production systems, these realities 
of interest are mostly productivity, quality or cost optimiza-
tion. Those optimization targets are in conflict with each 
other and companies usually choose their strategy according 
to product and the market.

Mathematical algorithms, which can handle this vast 
amount of data from the machines, yield a big potential 
for improving the optimization of production processes 
especially in the field of process validation. Process vali-
dation describes the process of finding an optimum for a 
certain machining process. Algorithms can be used for data 
regression, interpolation and similarity considerations. 
An algorithm needs always to be connected to a method 
which reflects the physical relationships of the distinct 
manufacturing processes. Methods for use in real production 
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environments need to be furthermore robust in terms of data 
gaps, noise and spurious correlations. Advanced mathemati-
cal algorithms yield potentials for the development of such 
methods.

There exists a vast literature on mathematical models 
and numerical algorithms for machine learning, see, for 
instance, [1, 2] or literature reviews with respect to machine 
learning in production [3–5]. However, an extensive litera-
ture review is beyond the scope of this work.

The main objectives of this work are to demonstrate how 
neural network structures can be mathematically analyzed 
to gain insight in the sense of explainable artificial intelli-
gence and how mathematical algorithms can improve com-
mon and recurrent tasks such as the training or retraining 
of neural networks. Both topics are of high relevance in the 
framework of production processes: first, understanding the 
black-box behavior of neural networks is desirable to ben-
eficially complement or even replace expensive experiments 
or simulations. Second, changing process or material param-
eters require the repeated application of a machine, which in 
terms of a machine learning method corresponds to a trans-
fer learning task, see, for instance, [6, 7]. Furthermore, the 
present paper aims to discuss the potential advanced math-
ematical algorithms in general and the methods presented 
in this work in particular have for production engineering 
and to highlight the benefits of such an interdisciplinary 
approach.

Our goal regarding transfer learning is the efficient 
retraining of an already trained neural network to adapt to 
a new data set. We compare the training and retraining of 
neural networks by backpropagation with a gradient-free 
algorithm using ensemble Kalman filtering. The latter is 
also discussed in, e.g., [8–13]. In these works, the ensem-
ble Kalman filtering algorithm is used for training neural 
networks, i.e., with a random initialization of weights and 
biases. While this is efficient since the method is derivative- 
free and parallelizable, convergence may suffer from a 
problem called particle collapse and from only providing 
an approximation of gradient descent [9]. However, we use 
the ensemble Kalman filtering algorithm for the retrain-
ing of neural networks. Hence, the weights and biases 
of the network to be retrained are initialized by weights 
and biases previously determined for a similar data set. 
Consequently, a poor convergence behavior is usually not 
an issue in our case. Furthermore, this even allows us to 
simplify the formulation of the algorithm. To the authors’ 
knowledge, the task of retraining of neural networks with 
the ensemble Kalman filtering algorithm or a variant of it 
has not been studied before.

The basis for the investigations and algorithms in 
this work is a special type of residual neural networks 
(ResNets) [14]. These are formulated in an amenable form 
such that mathematical tools and techniques are applicable. 

There have been made several formulations [15–17]. For 
example, in  [17], the connection of deep convolutional 
neural networks to partial differential equations (PDEs) is 
derived. In [15], the time-continuous version of a ResNet is 
studied and different temporal discretization schemes are 
discussed. There are also studies on application of kinetic 
methods to ResNets [18–21]. For example, in  [20], the 
authors consider the limit of infinitely many neurons and 
gradient steps in the case of one hidden layer. They are 
able to prove a central limit theorem. In this work, we show 
results of ResNets in the continuous as well as in the discrete 
case for the first time.

By means of two different use cases, we investigate the 
performance of the presented machine learning algorithms. 
In particular, we demonstrate training and efficient retrain-
ing of ResNets. First, we study the prediction of specific 
cutting forces for different materials and compare the results 
with measurement data from, e.g., [22]. Second, the parti-
cle behavior in a plasma spraying coating process [23–25] 
is predicted based on large simulation data sets. These use 
cases stem from cooperations within the DFG project EXC-
2023 “Internet of Production”. They are well suited for the 
demonstration of transfer learning algorithms in produc-
tion engineering because they are typical recurrent pro-
cesses underlying constant process or material parameter 
adjustments.

The present paper is structured as follows: In Sect. 2, 
we present advanced mathematical algorithms based on 
ResNets, in particular the ensemble Kalman filtering algo-
rithm for the retraining of ResNets. Section 3 studies the 
performance of this retraining algorithm by investigating 
two use cases. The potential and increasing importance of 
advanced mathematical algorithms in production engineer-
ing is discussed in Sect. 4. Finally, Sect. 5 concludes the 
paper and gives an outlook on future work.

2  Advanced mathematical algorithms

In this section, we present discrete and time-continuous for-
mulations of residual neural networks (ResNets) and show 
how a step towards explainable artificial intelligence can be 
made. Furthermore, we discuss the training and retraining of 
ResNets and describe an algorithm based on backpropaga-
tion and a gradient-free algorithm using ensemble Kalman 
filtering.

2.1  Mathematical formulation of residual neural 
networks (ResNets)

Artificial neural networks (ANNs) are multilayer percep-
tron networks. They can be understood as general mapping 
of (finitely many) input to output values. The universal 
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approximation theorem states that given enough layers L 
of the network, there exists an ANN for any continuous 
mapping [26]. We consider here a particular subclass of 
residual neural networks (ResNets). For notational con-
venience, denote by �(0) ∈ ℝ

m the vector of input data and 
by �(L) ∈ ℝ

m the output after application of L layers of 
the ANN. Also, W(�) ∈ ℝ

m×m and �(�) ∈ ℝ
m , � = 1,… , L , 

are weights matrices and bias vectors, respectively, and 
� is a nonlinear activation function. For simplicity, we 
have assumed that the weights and biases are of the same 
dimension as �. The prediction of a ResNet is given by

In order to derive an amenable formulation for math-
ematical tools, we introduce a pseudo-time. Denote by 
Δt > 0 a time step and define for � = 0,… , L

We also scale � as Δt� and the number of layers L as 
L∕Δt . In the time-continuous limit, which corresponds to 
Δt → 0 , L → ∞ such that LΔt is constant, we obtain

A particular feature of ANNs is the training. Here, usu-
ally a larger number i = 1,… ,N of pairs of input and target 
data 

(
�
(0)

i
, �i

)N

i=1
 is presented to the ANN and optimal 

weights W(�) and �(�) for � = 1,… , L are obtained by mini-
mizing a suitable loss function e(�, �) . An example of a 
measure of the deviation is the half mean square error

In terms of the previously defined equations, the train-
ing procedure may be formulated as

where �i(T) denotes the solution to (2) for initial data 
�i(0) = �

(0)

i
 . A similar formulation for the discrete problem 

(1) is possible. Also, we refer, for instance, to [8–11] for 
suitable numerical methods for problem (4).

The formulation (2) can be extended easily to include 
also stochastic fluctuations. This modeling assumption is 
inspired by stochastic neural networks with stochastic out-
put layers [27–29]. It has been observed that this approach 
is useful for the optimization procedure since the random 
fluctuations allow to escape from local minima. For a 
given family of diagonal positive semi-definite diffusion 

(1)�(�) = �(�−1) + �

(
W

(�)T�(�−1) + �(�)
)
, � = 1,… , L.

�(�Δt) = �(�), �(�Δt) = �(�) and W(�Δt) = W
(�).

(2)
{

�̇(t) = 𝜎(W(t) �(t) + �(t)),

�(0) = �(0).

(3)e(�, �) =
1

2
‖� − �‖2

2
.

(4)min
W(⋅),b(⋅)

1

N

N∑

i=1

e(�i(T), �i),

matrix K ∈ ℝ
m×m , a factor 𝜈 > 0 , and a m−dimensional 

standard Wiener process dW, the corresponding dynam-
ics reads

Mathematically, the feature of presenting a possibly 
large number N of input and target data to the ANN can 
be exploited in terms of the mean-field limit [21, 30–33]. 
Instead of considering input data �(0)

i
 individually, we con-

sider a statistical description of these data. Analytically, 
this is justified if the input data are iid random variables. 
Furthermore, we assume that the initial distribution of the 
input data �(0)

i
, i = 1,… ,N  , is given by a probability dis-

tribution g0(�) ∶ ℝ
m
→ ℝ . Then, the probability density 

g(t, �) is obtained as (weak) solution to the Vlasov-Fokker-
Planck-type partial differential equation (PDE)

see [34]. The equation is the mean-field limit of (5) for 
N → ∞ initial data. The corresponding loss function 
1

N

N∑
i=1

e(�i(T), �i) is obtained on the mean-field level as

where hT (⋅) is the probability distribution of the target data. 
For an example, consider the case of finitely many output 
data. Then, we have hT (�) = �N

Y
(�) where �N

Y
 is the empirical 

measure on the output data:

Rigorous convergence results are available [34] but 
beyond the scope of the manuscript. Also note that the 
given formulation is by far not the only possibility to 
define suitable limits of neural networks and we refer to 
[15–20] for further references where, e.g., limits in time 
and number of neurons are considered.

The previous reformulation shows that there is an 
underlying PDE type structure to be exploited in the 
following sections. The derivation is obtained for infi-
nitely many layers L as well as infinitely many input data. 
Clearly, this situation is an abstraction of realistic applica-
tions of ResNets and solely done for the purpose of fur-
ther analysis. For practical applications, the correspond-
ing results have again to be discretized and implemented. 
Practical examples are presented in Sect. 3.

(5)
{

d�(t) = �(W(t) �(t) + �(t))dt + � KdW,

�(0) = �(0).

(6)

⎧
⎪
⎨
⎪
⎩

�tg(t, �) + ∇� ⋅ (�(W(t)� + �(t))g(t, �))

+
�2

2
∇x ⋅ ∇x

�
K2(�)g(t, �)

�
= 0,

g(0, �) = g0(�),

(7)∫
ℝm ∫ℝm

e(�, �)g(T , �)hT (�)d�d�,

(8)�N
Y
(�) =

1

N

N∑

i=1

m∏

k=1

�(yk − yi,k).
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2.2  Towards explainable artificial intelligence

The classification of achievable output states is a typical 
question posed on ANNs. In the context of the formulation 
(6), a partial answer can be obtained by considering solu-
tions g∞(�) that are the steady states. In the case m ≡ 1 and 
K ∈ ℝ,K > 0 for all x ∈ ℝ , this is particularly easy and we 
obtain

where C is chosen such that ∫
ℝ
g∞(x)dx = 1, see [34], and 

w∞ and b∞ are two constants that parametrize the possible 
steady states. The case m = 1 corresponds to input data hav-
ing only a single feature. The characterization through the 
steady states (9) now classifies the admissible output data 
distributions. Those states still depend on the choice of the 
activation function � as well as the choice of the variance 
�2 and the diffusion K(x). In the case �(x) = x and K(x) = 1 , 
we obtain, e.g., that g∞ is in fact a Gaussian distribution 
showing that the ANN can represent any output data that is 
sampled from a Gaussian distribution with given mean and 
variance: (�̄�, �̄�2) . The latter determine implicitly the choice 
of (w∞, b∞). Other distributions can also be obtained and we 
refer to [34] for further examples.

2.3  Fast (re‑)training of neural networks

Given a trained neural network, a typical problem are 
changing external conditions. Examples are given for the 
prediction of specific cutting forces for different materials 
and a plasma spraying coating process in Sect. 3. Here, it 
would be advantageous to use a trained neural network for 
a single specific geometry as starting point for prediction 
under changing geometries or materials without the need 
to retrain the complete network. Having a continuous for-
mulation at hand, this problem mathematically is solved by 
differentiating the cost functional (7) with respect to target 
data hT (⋅) . This in turn requires to differentiate the continu-
ous dynamics (6) to obtain the sensitivities �g

�hT
 . Using 

Lagrange multiplier theory, an explicit expression of those 
sensitivities is obtained using adjoint variables. Those 
allow in turn to obtain suitable updates for the weights and 
biases of the neural network.

For a step size 𝜂 > 0 , the updates ΔW of weights and Δ� 
of biases are given by

(9)g∞(x;w∞, b∞) =
C

K2(x)
exp

(

∫
ℝ

2�(w∞x + b∞)

�2K2(x)
dx

)
,

(10)

ΔW(t) ∶= −𝜂 ∫
ℝ

g(t, �) � �̇�(W(t)� + �)(t)) 𝜕x𝜆(t, �)d�,

In case of differentiable activation functions, we have 
denoted by �̇� the derivative, otherwise suitable smoothing 
needs to be applied or a subdifferential calculus is required 
to define the derivative. The previous formula involves the 
adjoint state � that formally fulfills

The continuous description allows also for a numeri-
cal implementation by suitable discretization of (6), (10), 
(11) and (12). This implies that a single step to update the 
weights is obtained by solving two partial differential equa-
tions. Depending on the dimension m of the feature vec-
tor � ∈ ℝ

m , solving the partial differential equations can be 
computationally challenging. Furthermore, theoretically, 
one needs to solve the previous equations iteratively until 
ΔW(t) = 0 and Δ�(t) = � for all t which imposes additional 
computational constraints. A detailed discussion on advan-
tages as well as the performance is given in [34]. Here, we 
propose two numerical methods for fast retraining.

2.3.1  Discrete conditions through differentiation

The discrete forward propagation formula (1) allows for an 
analytical differentiation provided that � is sufficiently 
smooth and the obtained differential can be used to update 
weights and biases sequentially. Here, w(�)

ij
 is the entry (i, j) 

of the matrix W(�) = W(�Δt) and similarly b(�)
i

 is the ith 
entry of the vector �(�) = �(�Δt) . The updates are given by

where 𝜂 > 0 is a given learning rate,

for � = 1,… , L − 1 and

The Eqs. (14)-(16) are derived using direct differentiation 
of the error according to (3) and they are presented for the 
case K ≡ 0 for simplicity. In case of differentiable activation 

(11)Δ�(t) ∶= −𝜂 ∫
ℝ

g(t, �) �̇�(W(t)� + �)(t)) 𝜕x𝜆(t, �)d�.

(12)
�t�(t, �) + �(W(t)� + �(t)) �x�(t, �) −

�2

2
∇x ⋅ ∇xK

2(�)�(t, �) = 0,

(13)�(T , �) = ∫
ℝ

�xe(�, y)hT (y)dy.

(14)Δw
(�)

ij
= −�x

(�−1)

i
�
(�)

j
and Δb

(�)

i
= −��

(�)

i
,

(15)

𝛿
(�)

j
=

(
L∑

n=�+1

m∑

k=1

𝛿
(n)

k
w
(n)

jk

)
�̇�

(
m∑

i=1

(
w
(�)

ij
x
(�−1)

i

)
+ b

(�)

j

)

(16)𝛿
(L)

j
=
(
x
(L)

j
− yj

)
�̇�

(
m∑

i=1

(
w
(L)

ij
x
(L−1)

i

)
+ b

(L)

j

)
.
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functions, we have denoted by �̇� the derivative, otherwise the 
subdifferential in the sense of Clarke [35]. An iterative proce-
dure can be formulated for the previous updates for each set of 
new input and target data (�(0)

i
, �i) , i = 1,… ,N . For each value 

of this set, the Eqs. (1) and (14)-(16) are computed iteratively 
to update the weights and biases until a mean error such as the 
root mean square (RMS) error

is sufficiently small for each component, i.e., output quan-
tity, j.

Note that the previous Eqs. (15) and (16) have to be 
solved backwards in � , starting at � = L, as in the continu-
ous case where the backward equation for � in Eq. (12) is 
employed. Hence, again, an iterative procedure is required 
and depending on L and m the computational costs might 
be significant. Further note that as in the continuous case 
we require at least subdifferentiability of the activation 
function.

For the training and retraining examples in Sect. 3, we use 
the fully discrete approach.

2.3.2  Gradient‑free approach for high‑dimensional 
problems

An alternative numerical method for high-dimensional opti-
mization has been proposed recently for the fast solution to 
inverse problems [9, 11–13] using Kalman filtering [36]. The 
proposed and analyzed method uses the ensemble Kalman 
filter and has the advantages of being a purely primal method 
and of not relying on derivatives. In particular in the context 
of retraining, this is appealing since the activation function is 
in many cases non-differentiable. Furthermore, a primal 
method does not need to rely on solving backward equations 
for updating � or �(�)

j
 as shown in the previous section. We 

therefore briefly present the application of ensemble Kalman 
filtering for (re)training weights and biases of a neural 
network.

First, we define an initial ensemble of NJ particles, i.e., state 
vectors, by sampling from a normal distribution N(�init, �cId) , 
where �init and �cId are the mean and the covariance matrix of 
the distribution, respectively. Here, �c is a parameter and Id 
denotes the identity matrix with d the dimension of the vector 
�init . The state vector �init contains the initial weights w(�)

i,j
 and 

biases b(�)
i

 of a neural network with layers � = 1,… , L and 
i, j = 1,… ,m nodes. Note the dimension of each ensemble 
member

(17)eRMS,j =

√√√√ 1

2N

(
N∑

i=1

(
yi,j − x

(L)

i,j

)2

)
, j ∈ {1,… ,m}

�j ∈ ℝ
L(m2+m), j ∈ {1,… ,NJ}

in the presented case. Hence, the total dimension of 
unknowns to be updated by the filter is NJL(m

2 + m) which 
can be significantly larger than any number of unknowns 
within a suitable discretization of the continuous model (12).

For the initialization, random values or, if available, 
weights and biases of an already trained neural network 
can be used. The latter allows for an efficient retraining of 
a neural network to adapt the existing weights and biases 
to new input and/or target values. Then, retraining by an 
ensemble Kalman filter is an iterative process.

An ensemble of NJ particles is denoted by � ∶=
{
�j
}NJ

j=1
 . 

Its empirical covariance matrix is given by

where G
(
�(0), �j

)
 denotes a function which, depending on 

an input �(0) and a particle �j , computes an output. In the 
following, G is the forward propagation of a residual neural 
network given by (1) on the discrete level or by a discre-
tization of Eq. (6) for the continuous case. Hence, for an 
input �(0) , respectively g0(�) , chosen from a training set and 
weights and biases stored in the particle �j , the output of 
G
(
�(0), �j

)
 is �(L) , respectively �(T) . The mean values Ḡ and 

�̄ are computed by

The update of a particle �j is determined by adding

where � is the target corresponding to the input �(0) and 
Γ∗ ∈ ℝ

m×m denotes a covariance matrix. Note that in other 
works, e.g., [9, 11], Γ∗ =

(
D(�) + Γ−1

)−1 , where D(�) is the 
covariance matrix

and Γ is the covariance matrix of the measurement noise. 
In case of retraining of neural networks, Γ is unknown and 
therefore, as a simplification, we use Γ∗ as an algorithmic 
parameter. With the updated particles, the next iteration of 
the (re)training algorithm starts with the forward propaga-
tion G

(
�(0), �j

)
 for a new input �(0) randomly chosen from 

the training data set to compute (18). For a fast convergence 
of this algorithm, increasing the norm of the covariance 
matrix Γ∗ with each iteration has turned out to be a suc-
cessful choice provided that the norm stays bounded. This 
avoids the effect of the collapse of particles, see [9], which 
refers to the convergence of all particles to the same set of 

(18)C(�) =
1

NJ

NJ∑

j=1

(
�j − �̄

)
⊗

(
G
(
�(0), �j

)
− Ḡ

)
,

(19)Ḡ =
1

NJ

NJ∑

j=1

G
(
�(0), �j

)
, �̄ =

1

NJ

NJ∑

j=1

�j.

(20)Δ�j = C(�)Γ∗
(
� − G

(
�(0), �j

))
,

(21)D(�) =
1

NJ

NJ∑

j=1

(
G
(
�(0), �j

)
− Ḡ

)
⊗

(
G
(
�(0), �j

)
− Ḡ

)
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weights and biases while the training error is still large. The 
algorithm is run until a mean error such as the root mean 
square (RMS) error (17) is below a given tolerance.

3  Use cases

In this section, we apply ResNets to two different use cases: 
the prediction of (i) specific cutting forces and (ii) a plasma 
spraying coating process. In addition, we compare the 
retraining algorithms presented above.

3.1  Prediction of specific cutting forces

For obtaining a high workpiece quality from a cutting pro-
cess, the accurate prediction of cutting forces is crucial. A 
wide range of parameters such as the cutting material prop-
erties, the cutting wedge geometry, the cutting speed or the 
chip thickness influences the cutting forces. At the Labora-
tory for Machine Tools and Production Engineering (WZL) 
at RWTH Aachen University, tables containing the specific 
cutting forces for a large number of materials are available. 
These tables were gathered in extensive investigations, for 
instance, by Kienzle and Victor [22]. With only a few of the 
mentioned parameters, a ResNet can be trained being capa-
ble of accurately predicting the specific cutting forces for a 
selected material. Using the ensemble Kalman filter (EnKF) 
retraining method introduced in Sect. 2.3.2, this ResNet can 
be efficiently adapted for the prediction of specific cutting 
forces for further materials. This will be demonstrated exem-
plarily in the following for two materials arbitrarily chosen 
from the WZL tables. For further results, we refer to [37].

3.1.1  Training a ResNet for material C35G

For the training of a ResNet, we choose three input quanti-
ties, namely the chip thickness h, the rake angle � and the 
cutting speed v. The target quantity to be predicted by the 
ResNet is the specific cutting force ks . For the material 
C35G, 91 data points are available. For the training of the 
ResNet, 51 of these data points are randomly chosen such 
that 40 data points remain for testing the resulting network. 

Table 1 lists the first five of the test data points, correspond-
ingly to Fig. 1 described below, to give an idea of the struc-
ture of the data. The training is terminated when the RMS 
error eRMS,1 according to (17) is smaller than 3%. The chosen 
parameters are L = 11 , i.e., ten hidden layers, hyperbolic 
tangent as activation function � and � = 0.01 for the learn-
ing rate.

After the training, the prediction for the 40 test data 
points is computed by forward propagation with the trained 
weights and biases. The result is plotted in Fig. 1 together 
with the target values. It is obvious that a high prediction 
accuracy has been achieved. This is substantiated by a small 
RMS error of 5.8%.

3.1.2  Retraining by backpropagation or EnKF for material 
9SMnPb36

For the prediction of the specific cutting forces of another 
material, here 9SMnPb36, the weights and biases of the 
trained network have to be adapted due to the changed mate-
rial properties. The input values for the three input quantities 
h, � and v are exactly the same as for C35G, only the specific 
cutting forces ks (targets) differ. Hence, the setting is similar 
such that starting the training of a new ResNet by initializ-
ing its weights and biases with the already determined ones 

Table 1  Exemplary input and 
target data for material C35G

Data pt. Chip thickness h Rake angle � Cutting speed v Spec. cutting force k
s

[mm] [◦] [m/min] [N/mm2]

1 1 15 25 1919
2 1 -6 200 1720
3 0.4 6 200 1793
4 0.8 6 100 1546
5 0.63 6 200 1581
⋮ ⋮ ⋮ ⋮ ⋮

Fig. 1  Prediction of specific cutting forces k
s
 of material C35G for 40 

test data points after training by backpropagation
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from the C35G case instead of using random values leads 
to a reduced training time. This procedure is called retrain-
ing. For a comparison of runtimes and prediction accuracy, 
the retraining is carried out by both the backpropagation 
algorithm of the ResNet according to (14-16) and the EnKF 
algorithm according to (18-20).

Since existing weights and biases are adapted, the result-
ing ResNet must have the same number of layers, in this 
case L = 11 . For the retraining by backpropagation, the 
other two parameters are also chosen to stay the same, i.e., 
hyperbolic tangent as activation function � and � = 0.01 for 
the learning rate. The parameters for the retraining with the 
EnKF are set to be NJ = 100 particles (ensemble size) and 
�c = 0.01 . Since the measurement noise is unknown, we use 
the covariance matrix Γ∗ and set Γ∗ = n , where n denotes the 
current number of the iteration such that Γ∗ is successively 
increased. Note that Γ∗ is a scalar here because there is only 
one output quantity. For the retraining, again 51 of the 91 
data points available for 9SMnPb36 are arbitrarily selected 
such that 40 data points are left for testing. The retraining is 
terminated when eRMS,1 is smaller than 3%

The results of forward propagation for the 40 test data 
points after retraining by backpropagation or EnKF are 
depicted in Fig. 2. Note that the plot uses the same scale 
on the y-axis for the specific cutting force ks as Fig. 1 to 
demonstrate the significant difference in the target val-
ues compared with the C35G case. However, the predic-
tions computed after retraining again show a high accu-
racy. The RMS errors are 5.5% and 4.8% for the network 

retrained by backpropagation and the one retrained by EnKF, 
respectively.

The computation time for the retraining by back-
propagation is 78.6 s. The convergence behavior of the 
EnKF algorithm is influenced by the normal distribution 
N(�init, �cId) and the random choice of the input vector 
�(0) and the corresponding target vector � in each iteration 
of the retraining. Hence, Table 2 contains the computa-
tion times and RMS errors of ten runs of the retraining 
by EnKF for 9SMnPb36. The computation time varies 
between 17.7 and 29.8 s which corresponds to a speed-up 
of 2.6 to 4.4 compared with the retraining by backpropa-
gation. On average (23.4 s), the speed-up is 3.4. Together 
with the RMS errors ( 3.9% to 5.2% ), which are smaller 
than the RMS error of the network retrained by back-
propagation ( 5.5% ) for all ten runs, this demonstrates the 
high suitability of the EnKF for retraining the weights and 
biases of a neural network.

3.1.3  Dependence of prediction accuracy on number 
of training points

For training and retraining the ResNets in the previous 
sections, we have used N = 51 data points. Now, we inves-
tigate the dependence of the accuracy of the prediction 
of a (re)trained net on N in the case of the cutting forces. 
Since gathering training data, e.g., from experiments, is 
often expensive, N should be kept as small as possible 
to reduce costs. In the following, we do the training for 
C35G and the retraining for 9SMnPb36 as before but for 
each N ∈ {1,… , 51} . After that, the trained or retrained 
ResNets are tested with the same 40 data points as before 
and the RMS error eRMS,1 for the prediction of these test 
data is computed. Note that each retraining is initialized 
with the weights and biases determined in Sect. 3.1.1.

The results for the errors are plotted in Fig. 3. The 
behavior for the three cases, i.e., ResNets trained for C35G 
and retrained for 9SMnPb36 by backpropagation or EnKF, 
is similar. As expected, for small values of N with approxi-
mately N < 15 , the resulting ResNets lead to inaccurate 
predictions with errors larger than 20% . For N > 35 , all 
errors are below 10% , which is sufficient for the application 
at hand. With 36 training points, eRMS,1 is 7.9% (C35G), 
5.3% (9SMnPb36, retrained by backpropagation) and 4.4% 
(9SMnPb36, retrained by EnKF).

Fig. 2  Prediction of specific cutting forces k
s
 of material 9SMnPb36 

for 40 test data points after retraining by backpropagation or EnKF

Table 2  Computation times of the EnKF retraining algorithm and resulting RMS errors for the cutting force test data for ten runs

Run 1 2 3 4 5 6 7 8 9 10 Average

time [s] 21.1 26.4 27.2 22.8 21.8 29.8 26.5 17.7 20.8 20.2 23.4
error [%] 4.8 3.9 4.8 4.8 4.8 5.2 5.2 4.6 5.2 4.8 4.8
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3.2  Prediction of the plasma spraying coating 
process

At the Surface Engineering Institute (IOT) at RWTH Aachen 
University, models for the simulation of plasma spraying are 
developed [23, 24]. Plasma spraying is a coating process, 
where a powder is fed into a plasma jet which melts the 
powder and transports the particles towards a substrate with 
a high velocity. Due to a large number of influencing param-
eters and the turbulent flow behavior, the optimization of this 
coating process is time-consuming and expensive. The goal 
is to establish a digital twin of the simulation process which 
significantly reduces the computation time while still suf-
ficiently predicting the general behavior of the particles. An 
approach for training a ResNet similar to the one presented 
in the following and a comparison of ResNet results with 
results of a support vector machine can be found in [25]. 
Further ResNet results are also available in [37].

3.2.1  Data preparation

At the IOT, recently 45 simulations were carried out, where 
for each simulation five input quantities, namely primary gas 
flow rate, electric current, carrier gas flow rate, powder feed 
rate and stand-off distance of the substrate from the particle 

injector, were fixed and only one input quantity, namely the 
grain size of the powder particles, was varied in a fixed inter-
val, either 15–35 µm, 35–55 µm or 55–75 µm. Exemplarily, 
input data of four simulations are listed in Table 3. Since 
each of the 45 simulations contains between 1,500 and 2,000 
particles, a large dataset of more than 85,000 data points is 
available. The output quantities of the simulations are the 
particle coordinates x and z on the substrate, which is a plane 
at a fixed position y, and the particle in-flight temperatures 
and velocities T and v, respectively.

For training and testing a ResNet, we use 1,000 and 
10,000 data points, respectively, randomly chosen from 20 
simulations. For the subsequent retraining of the determined 
weights and biases by backpropagation or EnKF and testing 
the retrained networks, the same numbers of data points are 
randomly chosen from another 20 simulations.

3.2.2  Training a ResNet

With data for the six input quantities mentioned above, a 
ResNet is trained to predict the four output quantities x, z, T 
and v. The chosen parameters are L = 6 (five hidden layers), 
learning rate � = 0.0001 and hyperbolic tangent as activation 
function � . Due to the rather chaotic particle behavior which 
is caused by the turbulence of the flow and collisions of the 
powder particles, an accurate prediction of the coordinates, 
temperatures or velocities of single particles cannot be 
expected. This would only be possible if these effects were 
accounted for by the input quantities, but information on the 
turbulence of each particle is obviously not available when 
applying the trained ResNet to a new setting. However, the 
network should be capable of learning the average particle 
behavior. The training is stopped when the average RMS 
error ēRMS = (

∑nO
j=1

eRMS,j)∕nO , cf. (17), where nO = 4 is the 
number of output quantities, is smaller than 22% as this 
value has turned out to be close to the minimum error pos-
sible in this case.

For an easier identification of physical relations, e.g., a 
decreasing velocity with increasing particle size, in the plots 
of the results, all data are sorted according to the input parti-
cle (grain) size after testing as depicted in Fig. 4. The hori-
zontal lines mark the used grain size distributions: for each 

Fig. 3  RMS error eRMS,1 of the prediction of specific cutting forces k
s
 

for 40 test data points dependent on the number of data points used 
for training or retraining

Table 3  Exemplary input data 
for plasma spraying

Sim. Primary gas Electric Carrier gas Powder feed Stand-off Grain sizes
Flow [SLPM] Current [A] Flow [SLPM] Rate [g/min] Dist. [mm] [µm]

1 40.36 461.6 6.39 28.8 126 15–35
2 40.36 532.9 5.72 15.6 153 15–35
3 41.37 473.8 4.04 12.0 169 15–35
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

45 59.87 470.3 4.04 18.0 144 55–75
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of the 45 simulations by the IOT, the sizes of the input par-
ticles are 15–35 µm, 35–55 µm or 55–75 µm, see above and 
Table 3. Since the 10,000 data points were chosen randomly 
from 20 simulations, the numbers of data points per grain 
size interval differ: there are approximately 5,500, 2,000 
and 2,500 particles for the grain sizes 15–35 µm, 35–55 µm 
and 55–75 µm, respectively, for testing the trained network. 
These numbers amount to approximately 2,000, 4,000 and 
4,000 for testing the retrained networks.

The results of the forward propagation of the 10,000 test 
data points for the in-flight particle velocity v are shown in 
Fig. 5. The division into three parts corresponding to the 
input particle sizes is clearly visible. The prediction of the 
ResNet is less widespread than the spread of the targets. The 
turbulence of the flow leads to the effect that the velocities 
of two particles of the same size can differ significantly. The 
same holds for the particle temperature T and the coordi-
nates x and z on the substrate. For the training of a ResNet, 

this corresponds to input values of two particles being the 
same while the targets differ. Hence, only the average value 
is learned in such a case. However, the trend of the velocity 
(decreasing with increasing grain size) and the three mean 
values according to the three grain size intervals 15–35 
µm, 35–55 µm and 55–75 µm are accurately reproduced 
by the ResNet trained by backpropagation. In Fig. 5, target 
mean refers to the mean value of all target values inside the 
particular grain size interval and output mean is the cor-
responding mean value of all predictions. The deviations 
of the output mean values from the target mean values are 
0.74% (15–35 µm), 0.35% (35–55 µm) and 0.26% (55–75 
µm). With 21.9%, the average RMS error for the test data is 
even slightly lower than the one for the training data ( 22% , 
see above).

3.2.3  Retraining by backpropagation or EnKF

In contrast to the cutting force case in Sect. 3.1.2, here the 
input values for training and retraining differ, cf. Fig. 4. The 
parameters for the retraining by backpropagation are set 
to be the same as for the training, i.e., L = 6 , � = 0.0001 
and hyperbolic tangent. For the retraining by EnKF, we 
use NJ = 150 particles (ensemble size), �c = 0.005 and 
Γ∗ = 0.8nI4 . With both methods, a minimum average RMS 
error ēRMS = 20.6% can be obtained by the retraining.

The results of the forward propagation after retraining for 
the in-flight particle temperature T in Fig. 6 and for the particle 
coordinate x in Fig. 7 are of similar quality as the result after 
the initial training in Fig. 5 for the particle velocity v. Again, 
the division into three parts according to the three grain size 
intervals is visible, this time corresponding to the input data 
for retraining depicted in Fig. 4. Qualitatively, the predictions 
for the test data after retraining by backpropagation are similar 
to those after retraining by EnKF. As expected and described 
above, the prediction of the widespread single particle 

Fig. 4  Input particle (grain) size for testing the trained and retrained 
networks

Fig. 5  Prediction of in-flight particle velocity v for 10,000 test data 
points after training by backpropagation

Fig. 6  Prediction of in-flight particle temperature T for 10,000 test 
data points after retraining by backpropagation or EnKF
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temperatures and coordinates is not possible due to the missing  
turbulence information. The average RMS errors regarding the 
test data are 21.4% for both methods. With increasing particle 
size, the temperature T tends to decrease and the coordinate x 
tends to increase. This behavior and the mean values, which 
are analogously computed to those in Fig. 5, are well reflected 
by the retrained networks. The deviations of the output mean 
values from the target mean values for the temperature are 
0.97% and 1.55% (15–35 µm), 0.64% and 1.47% (35–55 µm) 
and 1.49% and 2.11% (55–75 µm), each for the test after 
retraining by backpropagation and by EnKF, respectively. 
Hence, the retraining by EnKF in this case leads to slightly 
larger deviations regarding the predicted mean values. How-
ever, a maximum deviation of 2.11% is clearly acceptable.

The computation time needed for retraining by backpropa-
gation is 530.6 s. Table 4 lists ten runtimes for the retraining by 
EnKF. The speed-up lies between 2.0 and 3.8 with an average 
speed-up of 2.8. This again shows that using the EnKF for 
retraining the weights and biases of a neural network can lead 
to a significant reduction of computation time.

In summary, the results of the training and retraining show 
that a neural network is a suitable replacement for the simu-
lation of the thermal spraying process when it comes to the 
prediction of the general particle behavior. While the average 
time needed for one simulation is about 3 h, the (re)training 
of a neural network only needs a few minutes, and the forward 
propagation with an already (re)trained network takes less than 
a second.

4  Discussion of potential for production 
engineering

Advanced mathematical algorithms such as shown in 
the previous sections can be integrated into standardized 
approaches for process validation, model-based process 
monitoring, control and quality predictions. The algorithms 
presented in this paper enhance common approaches of 
machine learning algorithms by means of development of 
new mathematical approaches. For an industrial usage, the 
application of algorithms needs to be validated with specific 
machining processes. Investigations showed that the perfor-
mance of a specific algorithm is dependent on the use [38]. 
This could be related to the governing physical causali-
ties and the underlying mathematical nature of the distinct 
processes. Once those relations are understood, an optimal 
algorithm for a specific problem can be recommended. Fur-
thermore, data from physically similar processes could be 
used to retrain the models for new processes (transfer learn-
ing algorithms).

For the most manufacturing processes, advanced math-
ematical algorithms and machine learning can be applied to 
handle the vast amount of data currently unused for produc-
tion. Automated approaches for feedback and learning (for 
instance, described in [39]) can be enhanced with algorithms 
such as presented in this paper. This can be used for con-
trol loops with focus on quality prediction or productivity 
or process validation. This initial validation of the process 
ensures mass production and is one of the most critical and 
cost-intensive processes in manufacturing.

For the manufacturing of high-integrity parts, this valida-
tion is furthermore certified from the respective authorities. 
If high-integrity parts fail, usually the whole system fails and 
hazards for the environment and human beings occur. As an 
example, blisks in aero engines are classified as critical parts 
and process validation is a highly cost-intensive process. 
Furthermore, this approach results in static processes which 
are not changed over time, i.e., new methodologies or tools 
can not be used for optimization. New approaches are very 
rare and mostly in research context (see [40]) rather than 
in real production environment. In these industries, how-
ever, data are collected throughout the whole manufacturing 
process and stored due to warranty reasons. These stored 
data, e.g., the cutting force data like shown in this paper, 
can be used for predictions of new processes with the help 

Fig. 7  Prediction of particle coordinate x on substrate for 10,000 test 
data points after retraining by backpropagation or EnKF

Table 4  Computation times of the EnKF retraining algorithm and resulting average RMS errors for the thermal spraying test data for ten runs

Run 1 2 3 4 5 6 7 8 9 10 Average

time [s] 183.0 138.3 261.6 158.3 206.9 157.0 171.1 254.3 202.5 155.7 188.9
error [%] 21.5 21.4 21.5 21.5 21.4 21.4 21.4 21.4 21.5 21.4 21.4
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of advanced mathematical algorithms. While in the manu-
facturing of high-integrity parts, the demanded quality is 
the main objective, mass production industries such as car 
manufacturing are more concerned with cost and energy 
optimization [41]. However, the methods for process vali-
dation can be used in the same way, only with other target 
variables (for instance, minimizing the occurring cutting 
force while ensuring quality). For future applications and 
digitalized manufacturing environments, the importance of 
algorithms for data analytics will increase [42]. The algo-
rithms presented in this paper have shown a high potential 
for usage in their respective field of application.

5  Conclusion

In this paper, we have shown how mathematical techniques 
may be applied to machine learning methods to investigate 
the algorithmic behavior of those methods and therefore 
help improve their performance. Residual neural networks 
(ResNets) as stated in this work allow for a mathematical 
analysis by setting up a time-continuous formulation. By 
exploiting their underlying structure, which is of the type of 
a partial differential equation (PDE), properties of a ResNet 
regarding their convergence behavior or possible outcome 
can be proven. This is possible at least for simple cases such 
as a single-input ResNet.

Advanced mathematical algorithms such as the ensem-
ble Kalman filtering (EnKF) accelerate common tasks. In 
particular, the computation time for the retraining of neural 
networks can be significantly reduced if the frequently used 
backpropagation algorithm is replaced by the EnKF algo-
rithm. The latter is parallelizable being a crucial advantage 
for its efficiency. However, even without this parallelization, 
we observed speed-up factors between 2.0 and 4.4 for our 
two use cases. For recurrent tasks, such an acceleration saves 
(training) time and therefore also costs. The predictions of a 
ResNet retrained by the EnKF algorithm are of similar accu-
racy as the ones of a ResNet retrained by backpropagation, 
even with the simplified covariance matrix Γ∗ introduced in 
this work.

In production engineering, the availability of adequate 
data is often not a problem but their profitable use is. As 
more and more data become available due to an increas-
ing number of digitalized manufacturing environments, the 
importance of the application of advanced mathematical 
algorithms in order to use the data increases. The mathe-
matical analysis of machine learning algorithms is necessary 
to understand and improve algorithms. In combination with 
more available data, this results in an interdisciplinary task.

Up to now, properties of neural networks are only math-
ematically rigorously proven for simple networks. Hence, 
further studies are necessary starting from the presented 

networks. As example, the use case of the plasma spray-
ing process has shown that a neural network is capable of 
predicting the average particle behavior. However, for the 
accurate prediction of the behavior of each single particle, 
an advanced approach such as a physics-informed neural 
network [43] has to be applied, linking a neural network to 
the governing equations of the process.
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