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We prove well-posedness of the Cauchy problem for a class of third order quasilinear 
evolution equations with variable coefficients in projective Gevrey spaces. The class 
considered is connected with several equations in Mathematical Physics as the KdV 
and KdVB equation and some of their many generalizations.
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r é s u m é

Nous prouvons que le problème de Cauchy est bien posé pour une classe d’équations 
d’évolution quasi linéaires du troisième ordre à coefficients variables dans des espaces 
de Gevrey projectifs. La classe considérée est liée à plusieurs équations en Physique 
Mathématique comme les équations KdV et KdVB et certaines de leurs nombreuses 
généralisations.
© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access 

article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction and main result

The Korteweg-de Vries equation
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)
∂xu = 0, t ∈ R, x ∈ R, (1.1)

has been introduced in [27] to describe the wave motion in shallow waters; u(t, x) represents the wave 
elevation, h is the (constant) water level, g the gravity, α a (small) constant, σ = h3

3 − Th
ρg , T describes the 
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surface tension and ρ the water density. It is the most famous example of dispersive third order evolution 
equation with (real) constant coefficients. Denoting D = −i∂, the equation (1.1) can be written in the form 
P (u, Dt, Dx)u = 0, where

P (u,Dt, Dx) = Dt −
1
2

√
g

h
σD3

x +
√

g

h

(
α + 3

2u
)
Dx. (1.2)

Notice that the principal symbol of P (in the sense of Petrowski) is given by

σprincipal(τ, ξ) := τ − 1
2

√
g

h
σξ3

and admits the real characteristic root τ = 1
2
√

g
hσξ

3. An operator of the form (1.2) can be referred to 
as a quasilinear 3-evolution operator, cf. [3,30]. A huge number of variants of the equation (1.1) has been 
introduced and studied along the years to model different phenomena connected with the wave propagation, 
see for instance [26,29,33] and the references therein. One of these variants is the so-called KdV-Burgers 
(KdVB) equation, see [21,22], which appears for instance in the analysis of the flow of liquids containing gas 
bubbles and of the propagation of waves in an elastic tube containing a viscous fluid. The KdVB equation 
reads as follows

∂tu + 2au∂xu + 5b∂2
xu + c∂3

xu = 0, (1.3)

cf. [21], where a, b, c are real constants. The associated operator

P (u,Dt, Dx) = Dt − cD3
x + 5ibD2

x + 2auDx (1.4)

is again a semilinear 3-evolution operator with constant coefficients. With respect to (1.2), the operator 
(1.4) admits complex-valued coefficients in the lower order terms. We recall that complex-valued coefficients 
naturally arise in the study of other evolution equations of physical interest (think for instance to the Euler-
Bernoulli vibrating beam operator studied in [8]). We also observe that assuming the coefficients of the 
equations (1.1), (1.3) to be constant is just a simplification; in principle some of the coefficients may depend 
on t and/or x.
Starting from these considerations our aim is to consider a class of quasilinear 3-evolution equations with 
variable coefficients connected with the previous physical models. Namely we shall consider the Cauchy 
problem for equations of the form P (t, x, u, Dt, Dx)u(t, x) = f(t, x) where

P (t, x, u,Dt, Dx) = Dt + a3(t)D3
x +

2∑
j=0

aj(t, x, u)Dj
x, (t, x) ∈ [0, T ] ×R, (1.5)

and f is an assigned function. Before addressing the general problem, let us spend some words about the 
linear case, that is the case when the coefficients aj , j = 0, 1, 2, do not depend on u. In this situation, we 
are led to consider the initial value problem{

P (t, x,Dt, Dx)u(t, x) = f(t, x)
u(0, x) = g(x)

, (t, x) ∈ [0, T ] ×R, (1.6)

where

P (t, x,Dt, Dx) = Dt + a3(t)D3
x +

2∑
aj(t, x)Dj

x. (1.7)

j=0
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When the coefficients aj , j = 0, 1, 2, 3, are all smooth and real-valued, the related Cauchy problem is well 
posed in L2 and in Sobolev spaces Hm for every m ∈ R, whereas when a2(t, x) is complex-valued, in [5] it 
was proved that if the Cauchy problem is well-posed in H∞(R) = ∩m∈RH

m(R), then there exist M, N > 0
such that ∀� > 0

sup
x∈R

min
0≤τ≤t≤T

�∫
−�

Im a2(t, x + 3a3(τ)θ)dθ ≤ M log(1 + �) + N. (1.8)

On the other hand, by [4] we know that if there exists C > 0 such that for every (t, x) ∈ [0, T ] ×R

| Im a2(t, x)| ≤ C

〈x〉 and | Im a1(t, x)| + |∂x Re a2(t, x)| ≤ C

〈x〉1/2 , (1.9)

with 〈x〉 = (1 + |x|2)1/2, then the Cauchy problem is well-posed in H∞(R) with a loss of derivatives. 
Namely, given f(t), g ∈ Hs(R) for some s ∈ R, there exists a unique solution with values in Hs−δ(R) for 
some suitable δ > 0. This type of results has been also extended to general linear p-evolution operators of 
the form

P (t, x,Dt, Dx) = Dt + ap(t)Dp
x +

p−1∑
j=0

aj(t, x)Dj
x, (t, x) ∈ [0, T ] ×R, (1.10)

where p is a positive integer, see [4,5]. In the recent paper [2], we considered the Cauchy problem (1.6) for 
the operator (1.7) under weaker decay conditions (compared to (1.9)) on the second order terms. Namely, 
we replaced the decay of | Im a2| in (1.9) by a decay of type 〈x〉−σ for some σ ∈ (1/2, 1). In this case, H∞

well-posedness is lost due to the violation of (1.8). However, in analogy with the case p = 2 treated in 
[11,23], under suitable assumptions on the regularity of the coefficients, it is natural to study the Cauchy 
problem in the Gevrey-Sobolev spaces

Hm
ρ;θ(R) = {u ∈ S ′(R) : 〈D〉meρ〈D〉

1
θ u ∈ L2(R)}, θ ≥ 1, m, ρ ∈ R,

where 〈D〉m and eρ〈D〉
1
θ are the Fourier multipliers with symbols 〈ξ〉m and eρ〈ξ〉

1
θ respectively. These spaces 

are Hilbert spaces with the following inner product

〈u, v〉Hm
ρ;θ

= 〈〈D〉meρ〈D〉
1
θ u, 〈D〉meρ〈D〉

1
θ v〉L2 , u, v ∈ Hm

ρ;θ(R).

The spaces

H∞
θ (R) :=

⋃
ρ>0

Hm
ρ;θ(R), H∞

θ (R) :=
⋂
ρ>0

Hm
ρ;θ(R)

are related to Gevrey classes in the following sense:

Gθ
0(R) ⊂ H∞

θ (R) ⊂ Gθ(R), γθ
0(R) ⊂ H∞

θ (R) ⊂ γθ(R),

where Gθ(R) (respectively, γθ(R)) denotes the space of all smooth functions f on R such that

sup sup h−|α|α!−θ|∂αf(x)| < +∞ (1.11)

α∈Nn x∈R
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for some h > 0 (resp., for every h > 0), and Gθ
0(R) (resp. γθ

0(R)) is the space of all compactly supported 
functions contained in Gθ(R) (resp. γθ(R)).
In [2], we proved that if

(i) a3 ∈ C([0, T ]; R) and there exists Ca3 > 0 such that |a3(t)| ≥ Ca3 ∀t ∈ [0, T ],
(ii) aj ∈ C([0, T ]; Gθ0(R)), θ0 > 1, for j = 0, 1, 2,
(iii) ∃σ ∈ (1

2 , 1) with θ0 < 1
2(1−σ) and Ca2 > 0 such that |∂β

xa2(t, x)| ≤ Cβ+1
a2

β!θ0〈x〉−σ for every t ∈
[0, T ], x ∈ R, β ∈ N0,

(iv) ∃Ca1 such that | Im a1(t, x)| ≤ Ca1〈x〉−
σ
2 for every t ∈ [0, T ], x ∈ R,

then the Cauchy problem (1.6) for the operator (1.7) is well-posed in H∞
θ (R) for every θ ∈ [θ0, 1

2(1−σ) ). 
Moreover, the solution satisfies the energy estimate

‖u(t, ·)‖2
Hm

ρ−δ;θ
≤ C

⎛⎝‖g‖2
Hm

ρ;θ
+

t∫
0

‖f(τ, ·)‖2
Hm

ρ;θ
dτ

⎞⎠ , t ∈ [0, T ], (1.12)

for a suitable δ ∈ (0, ρ). More recently, we realized that also well-posedness in H∞
θ (R) can be obtained with 

minor modifications in the proof of the latter result, and assuming the coefficients aj to satisfy suitable 
projective Gevrey estimates; in this case, we can prove an energy estimate of the form (1.12) for every
δ ∈ (0, ρ), and by this estimate well-posedness in H∞

θ (R) follows. The proof of this result is a particular 
case of Theorem 3.1 here below when the coefficients aj are independent of u, cf. Corollary 3.10.

Going back to quasilinear equations, in this paper we shall consider the Cauchy problem

{
P (t, x, u(t, x), Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ] ×R,

u(0, x) = g(x), x ∈ R,
(1.13)

for the operator (1.5) in the Gevrey setting described above. As far as we know, there are only a few 
results concerning KdV-type equations with constant coefficients in Gevrey spaces, see [15,17,18,20]. Due 
to the loss of regularity appearing in the linear case, it is not possible in general to deduce local well-
posedness for the problem (1.13) from the above mentioned results for linear equations via a standard 
fixed point argument but we need more sophisticated techniques. To prove our main result we use an 
approach inspired by the method proposed in [13,14] for hyperbolic equations and in [3] for p-evolution 
equations in the H∞ setting. Here we adapt this method to the Gevrey setting. The proof relies on the 
application of Nash-Moser inversion theorem and gives the existence of a unique solution u of (1.13) in 
C1([0, T ∗], H∞

θ (R)) for some T ∗ ∈ [0, T ] by solving the equivalent integral equation Ju ≡ 0 in [0, T ∗], where 
the map J : C1([0, T ], H∞

θ (R)) → C1([0, T ], H∞
θ (R)) is defined by

J(u) = u− g + i

t∫
0

(Pu)(s)ds− i

t∫
0

f(s)ds. (1.14)

This can be achieved by proving that J is a locally invertible map. The main reason to work in H∞
θ (R)

instead than in H∞
θ (R) is the following: Nash-Moser theorem applies in the category of tame Fréchet spaces 

and H∞
θ (R), equipped with its natural topology, is such a space, whereas this is not the case for H∞

θ (R).
In order to give a precise assumption on the regularity and decay of the coefficients, we need the following 
definition.
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Definition 1.1. For θ0 > 1 and τ ≥ 0 we denote by Γθ0,τ (R × C) the space of all functions f(x, w) defined 
on R ×C which are smooth in x and holomorphic in w and satisfy the following condition: for every A > 0
and every compact set K ⊂ C there exists a constant CK > 0 such that

sup
β,γ∈N0

sup
x∈R,w∈K

|∂β
x∂

γ
wf(x,w)|C−γ

K γ!−1A−ββ!−θ0〈x〉τ < +∞,

where ∂x stands for a real derivative and ∂w stands for a complex derivative.

We recall the notion of convergence in Γθ0,τ (R ×C). For {fj}j∈N0 ⊂ Γθ0,τ (R ×C) and f ∈ Γθ0,τ (R ×C)
we have fj → f in Γθ0,τ (R × C) as j → ∞, whenever for every A > 0 and every compact K there exists 
CK > 0 such that

sup
β,γ∈N0

sup
x∈R,w∈K

|∂β
x∂

γ
w{fj(x,w) − f(x,w)}|C−γ

K γ!−1A−ββ!−θ0〈x〉τ → 0, as j → ∞.

Now we are ready to state the main result of this manuscript.

Theorem 1.2. Let a3 ∈ C([0, T ]; R) such that |a3(t)| ≥ Ca3 > 0 for some constant Ca3 and for every 
t ∈ [0, T ]. Let moreover σ ∈

( 1
2 , 1

)
and θ0 < 1

2(1−σ) and assume that for j = 0, 1, 2 the coefficients aj ∈
C([0, T ], Γθ0,

jσ
2 (R ×C)). Then the Cauchy problem (1.13) is locally in time well-posed in H∞

θ (R) for every 

θ ∈
[
θ0,

1
2(1−σ)

)
: namely for all f ∈ C([0, T ]; H∞

θ (R)) and g ∈ H∞
θ (R), there exists T ∗ = T ∗(g, f) ∈ (0, T ]

and a unique solution u ∈ C1([0, T ∗]; H∞
θ (R)) of (1.13). Moreover, T ∗(g, f) is lower semi-continuous with 

respect to the data g and f (in the H∞
θ (R) × C([0, T ∗]; H∞

θ (R)) topology).

Example 1.3. Simple examples of coefficients aj satisfying the assumptions of Theorem 1.2 are given by 
aj(t, x, w) = a(t, x)〈x〉−σj

2 b(w) with a ∈ C([0, T ]; γθ0(R)) and b(w) = wr, r ∈ N, or b(w) = ew or some 
other entire function. Indeed, given an entire function h, for every compact K ⊂ C there exists a positive 
constant CK such that for every w ∈ K we have |∂α

wh(w)| ≤ Cα+1
K α!.

Remark 1.4. The result obtained in this paper concerns 3-evolution equations in one space dimension as 
(1.1), (1.3). The extension of this result to higher space dimension requires a major technical effort in the 
definition of the change of variable needed to study the linearized problem associated to (1.13). We will 
treat this extension in a future paper.

The paper is organized as follows. In Section 2 we recall some basic definitions and properties of tame 
Fréchet spaces and the statement of Nash-Moser theorem. Moreover, we prove that H∞

θ (R) is a tame 
Fréchet space. Then, we introduce pseudodifferential operators of infinite order which are employed in the 
next sections to study the linearized Cauchy problem associated to (1.13). Section 3 is devoted to the study 
of this linear problem which is done using similar techniques as the ones used in [2] adapted to the projective 
Gevrey setting. Finally, in Section 4 we apply Nash-Moser theorem to obtain local in time well-posedness 
of (1.13).

2. Preliminaries

2.1. Function spaces

In this subsection we recall some basic facts concerning tame Fréchet spaces and prove that H∞
θ (R) is 

such a space. Moreover, we recall the statement of Nash-Moser inversion theorem, see [19]. A graded Fréchet 
space X is a Fréchet space endowed with a grading, i.e. an increasing sequence of semi-norms:
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|x|n ≤ |x|n+1, ∀n ∈ N0, x ∈ X.

Example 2.1. Given a Banach space B, consider the space Σ(B) of all sequences {vk}k∈N0 ⊂ B such that

|{vk}|n :=
( ∞∑

k=0

e2nk‖vk‖2
B

)1/2

< +∞, ∀n ∈ N0.

We have that Σ(B) is a graded Fréchet space with the topology induced by the family of seminorms | · |n
(which is in fact a grading on Σ(B)).

We say that a linear map L : X → Y between two graded Fréchet spaces is a tame linear map if there 
exist r, n0 ∈ N such that for every integer n ≥ n0 there exists a constant Cn > 0, depending only on n, 
such that

|Lx|n ≤ Cn|x|n+r, ∀x ∈ X. (2.1)

The numbers n0 and r are called respectively base and degree of the tame estimate (2.1).

Definition 2.2. A graded Fréchet space X is said to be tame if there exist a Banach space B and two tame 
linear maps L1 : X → Σ(B) and L2 : Σ(B) → X such that L2 ◦ L1 is the identity on X.

Obviously, given a graded Fréchet space X and a tame space Y , if there exist two linear tame maps 
L1 : X → Y and L2 : Y → X such that L2 ◦ L1 is the identity on X, then also X is a tame space.

Theorem 2.3. The space H∞
θ (Rn) is a tame Fréchet space.

Proof. As standard, we shall denote here and throughout the paper the Fourier transform of a function (or 
a distribution) u by û or by F(u). First of all, it is easy to verify that H∞

θ (Rn) is a graded Fréchet space 
with the increasing family of seminorms

|f |k := ‖f‖H0
k,θ

= ‖ek〈·〉1/θ f̂(·)‖L2 , k = 1, 2, 3, . . . .

Consider now the space Σ(L2(Rn)) and the map L1 : H∞
θ (Rn) → Σ(L2(Rn)) defined as L1(f) = {fj}, j =

1, 2, 3, . . ., where fj = F−1(χj f̂) and the functions χj are such that χj(ξ) = 1 if jθ ≤ 〈ξ〉 < (j + 1)θ and 
χj(ξ) = 0 otherwise. Then we have

|{fj}|2k =
∞∑
j=1

e2jk‖f̂j‖2
L2 =

∞∑
j=1

e2jk‖χj f̂‖2
L2

=
∞∑
j=1

e2jk
∫
Rn

|χj(ξ)e−ρ〈ξ〉1/θeρ〈ξ〉
1/θ

f̂(ξ)|2 dξ

≤
∞∑
j=1

e2j(k−ρ)‖eρ〈·〉1/θ f̂(·)‖2
L2 ≤ Ck,ρ‖f‖2

H0
θ,ρ

for every ρ > k. In particular, for ρ = k + 1 we obtain that |{fj}|k ≤ C ′
k|f |k+1, hence L1 is a tame linear 

map. Similarly, we define the map L2 : Σ(L2(Rn)) → H∞
θ (Rn) as

L2({fj}) = F−1

⎛⎝ ∞∑
χj f̂j

⎞⎠ .

j=1
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We have

|L2{fj}|2k =

∥∥∥∥∥∥ek〈·〉1/θ
∞∑
j=1

χj(·)f̂j(·)

∥∥∥∥∥∥
2

L2

=
∫
Rn

∞∑
j=1

e2k〈ξ〉1/θ |χj(ξ)f̂j(ξ)|2 dξ

≤
∞∑
j=1

e2k(j+1)
∫
Rn

|χj(ξ)f̂j(ξ)|2 dξ ≤
∞∑
j=1

e2k(j+1)‖f̂j‖2
L2 = e2k|{fj}|2k.

Hence, also L2 is a tame linear map. Moreover, it is easy to verify that L2 ◦ L1 is the identity map on 
H∞

θ (Rn). �
Definition 2.4. Let X, Y be two graded spaces, U be an open subset of X. A map T : U → Y is said to be 
tame if for every u ∈ U there exist a neighborhood U ′ of u, r ≥ 0 and n0 ∈ N such that for every n ≥ n0
there exists a constant Cn > 0 such that

|T (u)|n ≤ Cn(1 + |u|n+r)

for all u ∈ U ′. The map T is said to be smooth tame if T is C∞ and its derivatives DnT : U ×Xn → Y are 
tame for every n ∈ N.

Finally, we recall the statement of Nash-Moser inversion theorem, cf. [19].

Theorem 2.5. (Nash-Moser) Let X, Y be tame Fréchet spaces, U be an open subset of X and let T : U → Y

be a smooth tame map. If for every fixed u ∈ U, h ∈ Y the equation DT (u)v = h has a unique solution 
v = S(u, h) and if the map S : U × Y → X is smooth tame, then T is locally invertible at any point and 
each local inverse is smooth tame.

2.2. Pseudodifferential operators

In this subsection we introduce the pseudodifferential operators of infinite order which will be used to 
prove the well-posedness for the linearized Cauchy problem associated to (1.13). Although the arguments 
in the next sections concern one space dimensional problems, it is convenient to introduce these operators 
in arbitrary dimension for future applications.
Fixed μ ≥ 1, A > 0 and m, m1, m2 ∈ R we will consider the following Banach spaces:

p(x, ξ) ∈ Sm
μ (R2n;A) ⇐⇒ sup

α,β∈Nn
0

x,ξ∈Rn

|∂α
ξ ∂

β
xp(x, ξ)|A−|α+β|(α!β!)−μ〈ξ〉−m+|α| < +∞,

p(x, ξ) ∈ S̃m
μ (R2n;A) ⇐⇒ |p|A := sup

α,β∈Nn
0

x,ξ∈Rn

|∂α
ξ ∂

β
xp(x, ξ)|A−|α+β|(α!β!)−μ〈ξ〉−m < +∞,

p(x, ξ) ∈ SGm1,m2
μ (R2n;A) ⇔ sup

α,β∈Nn
0

x,ξ∈Rn

|∂α
ξ ∂

β
xp(x, ξ)|A−|α+β|(α!β!)−μ〈ξ〉−m1+|α|〈x〉−m2+|β| < +∞.

We set

Sm
μ (R2n) :=

⋃
A>0

Sm
μ (R2n;A), S̃m

μ (R2n) :=
⋃
A>0

S̃m
μ (R2n;A), (2.2)

SGm1,m2
μ (R2n) :=

⋃
SGm1,m2

μ (R2n;A) (2.3)

A>0
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endowed with the inductive limit topology and

Γm
μ (R2n) :=

⋂
A>0

Sm
μ (R2n;A), Γ̃m

μ (R2n) :=
⋂
A>0

S̃m
μ (R2n;A), (2.4)

ΓGm1,m2
μ (R2n) :=

⋂
A>0

SGm1,m2
μ (R2n;A) (2.5)

endowed with the projective limit topology.

Remark 2.6. We observe that if μ < θ, then for every A > 0 we have Sm
μ (R2n; A) ⊂ Γm

θ (R2n), S̃m
μ (R2n; A) ⊂

Γ̃m
θ (R2n) and SGm1,m2

μ (R2n; A) ⊂ ΓGm1,m2
θ (R2n).

Taking into account the latter remark, in the sequel we shall consider symbols satisfying the estimates 
above for a fixed constant A > 0 as subsets of some projective symbol classes with a weaker Gevrey regularity 
as in (2.4), (2.5). For this reason we shall state the next results only for this type of classes.
For a given symbol p ∈ Γ̃m

θ (R2n) we denote by p(x, D) or by op(p) the pseudodifferential operator defined 
by

p(x,D)u(x) =
∫

eiξxp(x, ξ)û(ξ)d−ξ, u ∈ γθ
0(Rn), (2.6)

where d−ξ = (2π)−ndξ. Arguing as in [32, Theorem 3.2.3] or [34, Theorem 2.4] it is easy to verify that 
operators of the form (2.6) with symbols from Γ̃θ(R2n) map continuously γθ

0(Rn) into γθ(Rn). Moreover, 
from the classical theory of pseudodifferential operators, they extend to linear and continuous operators 
from Hm′(Rn) to Hm′−m(Rn). For our purposes, it is also important to state the action of these operators 
on the Gevrey-Sobolev spaces defined in the Introduction. The following result is a direct consequence of 
[24, Proposition 6.3] applied to symbols from Γ̃m

θ (R2n).

Proposition 2.7. Let p ∈ Γ̃m
θ (R2n). Then the operator p(x, D) maps continuously Hm′

ρ;θ(Rn) into Hm′−m
ρ;θ (Rn)

for every m′, ρ ∈ R.

By [24, Proposition 6.4], given p ∈ Γm
θ (R2n) and q ∈ Γm′

θ (R2n), the operator p(x, D)q(x, D) is a pseu-
dodifferential operator with symbol s given for every N ≥ 1 by

s(x, ξ) =
∑

|α|<N

(α!)−1∂α
ξ p(x, ξ)Dα

x q(x, ξ) + rN (x, ξ),

where rN ∈ Γm+m′−N
θ (R2n).

In the following we shall consider also particular symbols of infinite order, that is growing exponentially at 
infinity. Such operators are frequently used in the analysis of evolution equations in the Gevrey setting, see 
for instance [1,2,6,7,10,11,23,24,34]. In particular, in this paper they will be employed to define the change of 
variables which allows to treat the linearized problem associated to (1.13). We shall not develop a complete 
calculus for pseudodifferential operators of infinite order here since for our purposes we can limit ourselves 
to considering some particular examples of such operators, namely defined by a symbol of the form eΛ(x,ξ)

for some Λ ∈ S
1/κ
μ (R2n; A), where κ > 1 and Λ is real-valued. It is easy to verify that e±Λ satisfies an 

estimate of the form

|∂α
ξ ∂

β
x e

±Λ(x,ξ)| ≤ A
|α+β|
1 〈ξ〉−|α|(α!β!)μe2ρ0〈ξ〉

1
κ (2.7)

for some positive constant A1 independent of α, β, where
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ρ0 := sup
(α,β)∈N2n

0

sup
(x,ξ)∈R2n

A−|α+β|(α!β!)−μ〈ξ〉−1/κ+|α||∂α
ξ ∂

β
xΛ(x, ξ)|,

see [24, Lemma 6.2]. The estimate (2.7) guarantees that the related pseudodifferential operator

e±Λ(x,D)u(x) =
∫
Rn

eiξx±Λ(x,ξ)û(ξ) d−ξ

is well defined and continuous as an operator from γθ
0(Rn) to γθ(Rn) for every θ ∈ (μ, κ). We shall also 

consider the so-called reverse operator of e±Λ(x, D), denoted by R{e±Λ(x, D)}. This operator, introduced 
in [25, Proposition 2.13] as the transposed of e±Λ(x, −D), is defined as an oscillatory integral by

R{e±Λ(x,D)}u(x) = Os−
∫∫

eiξ(x−y)±Λ(y,ξ)u(y) dyd−ξ.

The following continuity result holds for the operators eΛ(x, D) and R{eΛ(x, D)}.

Proposition 2.8. Let Λ ∈ S̃
1/κ
μ (R2n; A) for some A > 0 and κ, μ ∈ R such that 1 < μ < κ and let ρ, m ∈ R

and θ ∈ (μ, κ). Then the operators eΛ(x, D) and R{eΛ(x, D)} map continuously Hm
ρ;θ(Rn) into Hm

ρ−δ;θ(Rn)
for every δ > 0.

Proof. We observe that eΛ(x, D) = a(x, D)eδ〈D〉
1
θ for every δ > 0, where a(x, ξ) = eΛ(x,ξ)−δ〈ξ〉

1
θ . Since 

μ < θ < κ we easily obtain a ∈ Γ̃0
θ(R2n). So we obtain from Proposition 2.7 that eΛ : Hm

ρ;θ(Rn) → Hm
ρ−δ;θ(Rn)

continuously for every m, ρ ∈ R. The continuity of R{eΛ(x, D)} follows by similar arguments. �
In the next result we shall need to work with the weight function 〈ξ〉h = (h2 + |ξ|2)1/2 where h ≥ 1. We 

point out that we can replace 〈ξ〉 by 〈ξ〉h in all the previous definitions and statements, and this replacement 
does not change the dependence of the constants, that is, all the previous constants are independent of h. 
Moreover, we also need the following stronger hypothesis on Λ(x, ξ):

|∂α
ξ ∂

β
xΛ(x, ξ)| ≤ C

|α+β|+1
Λ α!μβ!μ〈ξ〉−|α|

h , (2.8)

whenever |β| ≥ 1. This means that ∂α
ξ ∂

β
xΛ behaves like a symbol of order 0 if β �= 0. We will show in the 

next Section that this condition will be fulfilled by the symbol Λ̃ appearing in the change of variable.

Theorem 2.9. Let p be a symbol in Γm
θ (R2n) and let Λ satisfy, for some CΛ > 0 and μ < θ < κ:

|∂α
ξ Λ(x, ξ)| ≤ C

|α|+1
Λ α!μ〈ξ〉

1
κ−|α|
h (2.9)

and (2.8) for β �= 0. Then there exists h0 = h0(CΛ) ≥ 1 such that if h ≥ h0, then

eΛ(x,D)p(x,D)R{e−Λ(x,D)} = p(x,D) + op

⎛⎝ ∑
1≤|α+β|<N

1
α!β!∂

α
ξ {∂β

ξ e
Λ(x,ξ)Dβ

xp(x, ξ)Dα
x e

−Λ(x,ξ)}

⎞⎠
+ rN (x,D) + r∞(x,D),

where rN and r∞ satisfy the following conditions: there exists c′ = c′(Λ) > 0 and for every A > 0 there 
exists CA > 0 such that

|∂α
ξ ∂

β
x rN (x, ξ)| ≤ CAA

|α+β|+2Nα!θβ!θN !2θ−1〈ξ〉m−(1− 1
κ )N−|α|

, (2.10)
h
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|∂α
ξ ∂

β
x r∞(x, ξ)| ≤ CAA

|α+β|+2Nα!θβ!θN !2θ−1e−c′〈ξ〉
1
θ
h . (2.11)

Remark 2.10. Notice that choosing N sufficiently large depending on κ, we can consider rN as a symbol of 
order 0. Concerning the remainder term r∞, it is easy to verify that the corresponding operator possesses 
regularizing properties in Gevrey classes, namely it maps (Gθ

0)′(Rn) into Gθ(Rn). However, to prove our 
results it will be sufficient to regard also r∞ as a symbol of Γ̃0

θ(R2n). In conclusion, in the computations of 
Section 4, choosing N large enough, we shall always consider the remainder term rN + r∞ as a symbol of 
Γ̃0
θ(R2n) and apply to it Proposition 2.12 below.

Remark 2.11. The proof of Theorem 2.9 follows by applying readily in the projective Gevrey setting the 
same argument used in the proofs of Theorems 6.9 and 6.10 of [24] and Theorem 2 of [2] in the classical 
Gevrey framework. For this reason, we omit it for the sake of brevity. We just stress the fact that dealing 
now with projective Gevrey regular symbols p, it is possible to conclude that the remainders rN and r∞
also satisfy this type of estimates, cf. (2.10), (2.11).

Now we consider the conjugation with an operator of the form eΛρ′,k(t, D) where Λρ′,k(t, ξ) = ρ′〈ξ〉1/θ +
k(T−t)〈ξ〉2(1−σ) for some ρ′ ∈ (0, ρ) and k > 0 (where ρ > 0 is the same index appearing in the statement of 
Theorem 3.1). The next result can be proved following the same argument as in the proof of [6, Proposition 
3.1]. Compared to the latter result, in the present case, the conjugation can be performed for every ρ′ > 0
since the symbol of the operator satisfies projective Gevrey estimates. Namely, we have the following result.

Proposition 2.12. Let p ∈ Γ̃m
θ (R2). Then we can write

eΛρ′,k(t,D) ◦ p(x,D) ◦ e−Λρ′,k(t,D) = op

(∑
α<N

1
α!∂

α
ξ e

Λρ′,k(t,ξ)Dα
xp(x, ξ)e−Λρ′,k(t,ξ)

)
+ rN (t, x,D),

where rN satisfies the following condition: for every A > 0 there exists Ck,ρ′,A,N > 0 such that

|∂α
ξ ∂

β
x rN (t, x, ξ)| ≤ |p|ACk,ρ′,A,NAα+β〈ξ〉m−N(1− 1

θ ).

3. The linearized problem

Fixed u ∈ Ω ⊂ XT := C1([0, T ]; H∞
θ (R)), where Ω denotes a bounded set, we now consider the linear 

Cauchy problem{
Pu(D)v(t, x) := P (t, x, u(t, x), Dt, Dx)v(t, x) = f(t, x), (t, x) ∈ [0, T ] ×R,

v(0, x) = g(x),
(3.1)

in the unknown v. In this section we shall prove the following result.

Theorem 3.1. Under the assumptions of Theorem 1.2, given m ∈ R, ρ > 0, θ ∈
[
θ0,

1
2(1−σ)

)
, u ∈

Ω ⊂ C1([0, T ]; H∞
θ (R)), f ∈ C([0, T ]; Hm

ρ;θ(R)) and g ∈ Hm
ρ;θ(R), there exists a unique solution v ∈

C1([0, T ]; Hm
ρ−δ;θ(R)) for every δ ∈ (0, ρ) of the Cauchy problem (3.1) and the following energy estimate 

is satisfied:

‖v(t, ·)‖2
Hm

ρ−δ;θ
≤ CΩ,ρ,T

⎛⎝‖g‖2
Hm

ρ;θ
+

t∫
‖f(τ, ·)‖2

Hm
ρ;θ

dτ

⎞⎠ ∀t ∈ [0, T ], (3.2)

0
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for some positive constant CΩ,ρ,T . Moreover, if f ∈ C([0, T ], H∞
θ (R)), g ∈ H∞

θ (R), then v belongs to 
C1([0, T ]; H∞

θ (R)).

In order to prove the theorem above we shall follow the same method used to prove the well-posedness 
of the Cauchy problem for linear 3-evolution equations in H∞

θ (R) in [2]. This method is based on making 
a suitable change of variable in order to transform the Cauchy problem (3.1) for the operator Pu(D) into 
an equivalent Cauchy problem which turns out to be well-posed in Sobolev spaces. The transformation we 
have in mind will be the composition of two transformations both defined by invertible pseudodifferential 
operators of infinite order. Namely it will be of the form

QΛ̃,k,ρ′(t, x,D) = eΛρ′,k(t,D) ◦ eΛ̃(x,D), (3.3)

where Λ̃ = λ2 + λ1 ∈ S
2(1−σ)
μ (R2) for some μ > 1, and Λρ′,k(t, ξ) = ρ′〈ξ〉

1
θ

h + k(T − t)〈ξ〉2(1−σ)
h for some 

ρ′ ∈ (0, ρ), k > 0 and h >> 1 to be chosen later on. Then, by the inverse transformation, we recover the 
solution v = QΛ̃,k,ρ′(t, x, D)−1w of (3.1), where w stands for the solution of the auxiliary problem. The 
mapping properties of the transformations QΛ̃,k,ρ′(t, x, D) and QΛ̃,k,ρ′(t, x, D)−1 will determine the space 
where the Cauchy problem (3.1) is well-posed. The role of each part of the transformation QΛ̃,k,ρ′(t, x, D)
will be, broadly speaking, the following:

• in the transformation eΛ̃(x, D) the functions λ1 and λ2 will play two different roles: namely λ2 will not 
change a3D

3
x, but it will change the operator a2D

2
x into the sum of a positive operator plus a remainder 

of order 1 which satisfies the same assumptions as a1Dx, plus an error of order 2(1 −σ) whereas λ1 will 
not change the terms of order 2 and 3, but it will turn the terms of order 1 into the sum of a positive 
operator, plus a remainder of order zero, plus an error of order at least 2(1 − σ);

• the transformation with ek(T−t)〈D〉2(1−σ)
h will not change the terms of order 1, 2 and 3, but it will correct 

the error of order 2(1 − σ), changing it into the sum of a positive operator plus a remainder of order 
zero;

• finally, the transformations with eρ
′〈D〉

1
θ
h simply serves to change the setting of the Cauchy problem from 

Gevrey-Sobolev spaces to standard Sobolev spaces: since 2(1 −σ) < 1/θ the leading part of QΛ̃,k,ρ′(t, x, ξ)

is eρ′〈ξ〉
1
θ
h , then the inverse of QΛ̃,k,ρ′(t, x, D) possesses regularizing properties with respect to the spaces 

Hm
ρ;θ, because ρ′ > 0.

Working step by step, in the next subsection we define the symbol Λ̃ and briefly state its main features, then 
in Subsection 3.3 we perform the conjugation QΛ̃,k,ρ′(iPu)Q−1

Λ̃,k,ρ′ , and finally in Subsection 3.4 we prove 
Theorem 3.1.

3.1. Change of variables

For M2, M1 > 0 and h ≥ 1 a large parameter, we define

λ2(x, ξ) = M2w

(
ξ

h

) x∫
0

〈y〉−σψ

(
〈y〉
〈ξ〉2h

)
dy, (x, ξ) ∈ R2, (3.4)

λ1(x, ξ) = M1w

(
ξ

h

)
〈ξ〉−1

h

x∫
0

〈y〉−σ
2 ψ

(
〈y〉
〈ξ〉2h

)
dy, (x, ξ) ∈ R2, (3.5)

where
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w(ξ) =
{

0, |ξ| ≤ 1,
−sgn a3, |ξ| ≥ 2,

ψ(y) =
{

1, |y| ≤ 1
2 ,

0, |y| ≥ 1,

|∂α
ξ w(ξ)| ≤ Cα+1

w α!μ, |∂β
yψ(y)| ≤ Cβ+1

ψ β!μ, with μ > 1. The functions λ1 and λ2 have been introduced in 
[2]. They satisfy peculiar estimates where the powers of the weight functions 〈ξ〉h and 〈x〉 can be adjusted as 
needed thanks to the special structure of suppψ and suppψ′. These estimates are contained in the following 
two lemmas which have been proved in [2].

Lemma 3.2. Let λ2(x, ξ) as in (3.4). Then the following estimates hold:

(i) |∂α
ξ λ2(x, ξ)| ≤ M2C

α+1
λ2

α!μ〈ξ〉−α
h min{〈ξ〉2(1−σ)

h , 〈x〉1−σ}, for α ≥ 0;
(ii) |∂α

ξ ∂
β
xλ2(x, ξ)| ≤ M2C

α+β+1
λ2

α!μβ!μ〈ξ〉−α
h 〈x〉−σ−β+1, for α ≥ 0, β ≥ 1,

where Cλ2 is a constant depending only on Cw, Cψ and σ.

Lemma 3.3. Let λ1(x, ξ) as in (3.5). Then

(i) |∂α
ξ λ1(x, ξ)| ≤ M1C

α+1
λ1

α!μ〈ξ〉−α
h min{〈ξ〉1−σ

h , 〈ξ〉−1
h 〈x〉1−σ

2 , 〈x〉 1
2−σ

2 }, for α ≥ 0;
(ii) |∂α

ξ ∂
β
xλ1(x, ξ)| ≤ M1C

α+β+1
λ1

α!μβ!μ〈ξ〉−α
h 〈x〉−σ

2 −β+1 min{〈ξ〉−1
h , 〈x〉−σ

2 }, for α ≥ 0, β ≥ 1,

where Cλ1 is a constant depending only on Cw, Cψ and σ.

Remark 3.4. Lemmas 3.2 and 3.3 imply λ2, λ1 ∈ SG0,1−σ
μ (R2). Moreover, we also have that λ1 ∈ S1−σ

μ (R2)
and λ2 ∈ S

2(1−σ)
μ (R2).

The following result proves the invertibility of the transformation eΛ̃(x, D) and expresses the inverse in 
terms of a composition of R{e−Λ̃(x, D)} with a Neumann series, see [1, Lemma 4] for the proof. In the 
statement we shall denote by Σκ(R2) the space of all symbols τ(x, ξ) satisfying for every A > 0, c > 0 an 
estimate of the form

|∂α
ξ ∂

β
x τ(x, ξ)| ≤ CAA

α+β(α!β!)κe−c(〈x〉1/k+〈ξ〉1/kh ),

cf. [31].

Lemma 3.5. Let μ > 1. For h ≥ 1 large enough, the operator eΛ̃(x, D) is invertible and its inverse is given 
by

{eΛ̃(x,D)}−1 = R{e−Λ̃(x,D)} ◦
∑
j≥0

(−r(x,D))j ,

for some r = r̃ + r̄, where r̃ ∈ SG−1,−σ
μ (R2), r̄ ∈ Σκ(R2) for every κ > 2μ − 1 and

r̃ −
∑

1≤γ≤N

1
γ!∂

γ
ξ (eΛ̃Dγ

xe
−Λ̃) ∈ SG−1−N,−σ−σN

μ (R2), ∀N ≥ 1.

Moreover, 
∑

(−r(x, D))j has symbol in SG0,0
μ (R2) + Σκ(R2) for every κ > 2μ − 1. Finally, we have

{eΛ̃(x,D)}−1 = R{e−Λ̃(x,D)} ◦ op(1 − i∂ξ∂xΛ̃ − 1
∂2
ξ (∂2

xΛ̃ − [∂xΛ̃]2) − [∂ξ∂xΛ̃]2 + q−3), (3.6)
2
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where q−3 ∈ SG−3,−3σ
μ (R2) + Σκ(R2).

Remark 3.6. Since we can choose μ > 1 arbitrarily close to 1, we may assume 2μ − 1 < θ. Therefore we can 
take κ < θ in the above lemma.

3.2. Estimates for the linearized coefficients

Before starting to prove Theorem 3.1, we need to state which type of estimates the coefficients of the 
linearized problem (3.1) satisfy under the assumptions of Theorem 1.2.
Since Ω ⊂ XT is bounded, we have that for any k ∈ N there exists Bk > 0 such that

sup
w∈Ω

‖w‖H0
k;θ

≤ Bk.

On the other hand we can write

Dα
xu(t, x) =

∫
eiξxe−ρ〈ξ〉

1
θ ξαeρ〈ξ〉

1
θ û(t, ξ)d−ξ.

Since u(t) ∈ H∞
θ , then for any ρ > 0 Hölder inequality gives

|Dα
xu(t, x)|2 ≤

∫
e−2ρ〈ξ〉

1
θ ξ2αdξ ‖u(t)‖2

H0
ρ;θ

≤
(

2θ
ρ

)2θα

α!2θ‖e− ρ
2 〈·〉‖2

L2‖u(t)‖2
H0

ρ;θ
.

The above estimate implies that for any A > 0 there is a positive constant CΩ,A such that

|Dα
xu(t, x)| ≤ CΩ,AA

αα!θ, t ∈ [0, T ], x ∈ R, α ∈ N0, (3.7)

for every u ∈ Ω. In particular, we conclude that the values of w = u(t, x) lie in a fixed compact set 
KΩ = K ⊂ C(≈ R2) for every u ∈ Ω. We shall fix this compact from now on. Using (3.7) and the 
fact that aj ∈ C([0, T ], Γθ0,

jσ
2 (R × C)), j = 0, 1, 2, in what follows we shall estimate the x-derivatives 

of the maps x �→ aj(t, x, u(t, x)). For this we need the Faà di Bruno formula in several variables: let 
g = (g1, . . . , gp) : Rn → Rp, f : Rp → R and β ∈ Nn

0 , then

Dβ(f ◦ g)(x) =
∑
∗

β!
k1! . . . k�!

{Dk1+···+k	f}(g(x))
�∏

j=1

p∏
i=1

[
Dδjgi(x)

δj !

]kji

(3.8)

where the notation 
∑
∗

means that the sum is taken over all � ∈ N, all sets {δ1, . . . , δ�} of � distinct elements 

of Nn
0 − {0} and all (k1, . . . , k�) ∈ (Np

0 − {0})� such that 
∑

j=1 |kj |δj = β. We also report two useful 
inequalities:

|k1 + · · · + k�|!|δ1|!|k1| · · · |δ�|!|k	| ≤ |β|!

and ∑ β!
λ|k1+···+k	| ≤ C

|β|+1
λ , ∀λ > 0,
k1! . . . k�!
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where β, �, (δ1, . . . , δ�), (k1, . . . , k�) are as in formula (3.8). For details on Faà di Bruno formula we address 
the reader to Proposition 4.3, Corollary 4.5 and Lemma 4.8 of [9].
Let now β ∈ N0, then

Dβ
x(aj(t, x, u(t, x))) =

∑
∗

β!
k1! . . . k�!

{Dk1+···+k	

(x,w) aj}(t, x, u(t, x))
�∏

j=1

3∏
i=1

[
D

δj
x gi(t, x)
δj !

]kji

,

where g1(t, x) = x, g2(t, x) = Re u(t, x) and g3(t, x) = Im u(t, x). Applying (3.7) and the assumptions on 
the aj , we get for every A, B > 0:

|Dβ
x(aj(t, x, u(t, x)))| ≤

∑
∗

β!
k1! . . . k�!

CK,AA
|k1+···+k	||k1 + · · · + k�|!θ0〈x〉−σj/2

×
�∏

j=1

3∏
i=1

[
CΩ,BB

δjδj !θ−1]kji

≤ CK,AB
β〈x〉−σj/2β!

×
∑
∗

|k1 + · · · + k�|!
k1! . . . k�!

(CΩ,BA)|k1+···+k	| |k1 + · · · + k�|!θ−1
�∏

j=1
δj !(θ−1)|kj |

︸ ︷︷ ︸
≤β!θ−1

≤ CK,AB
β〈x〉−σj/2β!θ

∑
∗

|k1 + · · · + k�|!
k1! . . . k�!

(CΩ,BA)|k1+···+k	|.

Taking A = C−1
Ω,B it follows

|Dβ
x(aj(t, x, u(t, x)))| ≤ C1CK,Ω,B{C1B}ββ!θ〈x〉−σj/2

for some constant C1 > 0 independent of A and B and CK,Ω,B > 0 which in fact depends only on B and Ω. 
Rescaling the constant C1B we obtain the following result.

Lemma 3.7. Under the assumptions of Theorem 1.2, let Ω ⊂ XT be a bounded subset. Then for every B > 0
there exists a constant CΩ,B > 0 such that

|Dβ
x(aj(t, x, u(t, x)))| ≤ CΩ,BB

ββ!θ〈x〉−σj/2, t ∈ [0, T ], x ∈ R, β ∈ N0, (3.9)

for every u ∈ Ω.

3.3. The conjugation procedure

In the present subsection we perform, step by step, the conjugations needed to obtain the operator 
QΛ̃,k,ρ′(iPu)Q−1

Λ̃,k,ρ′ .

3.3.1. Conjugation with eΛ̃

Now we perform the conjugation of iPu by the operator eΛ̃(x, D), with Λ̃(x, ξ) = λ2(x, ξ) + λ1(x, ξ). In 
the next computation, by abuse, we shall denote by a3(t, D) and aj(t, x, u, D) for j = 1, 2, the operators 
a3(t)D3

x and aj(t, x, u)Dj
x, j = 1, 2, respectively, and by a1, a2, a3 their symbols, sometimes omitting the 

dependence on the variables t, x, u and ξ.
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• Conjugation of ia3(t, D): Since a3 does not depend on x, Theorem 2.9 simplifies into (omitting (t, x, D)
in the notation)

eΛ̃(x,D) ◦ ia3(t,D) ◦R {e−Λ̃(x,D)} = ia3(t,D)

+ op
(
∂ξ{ia3Dx(−Λ̃)} + 1

2∂
2
ξ{ia3[D2

x(−Λ̃) + (DxΛ̃)2]} + q3 + r∞

)
.

Since x-derivatives kill the ξ-growth given by the integrals of Λ̃, we can conclude that q3 has order zero. 
Composing with the Neumman series we get

eΛ̃(x,D)ia3(t,D){eΛ̃(x,D)}−1 = op
(
ia3 − ∂ξ(a3∂xΛ̃) + i

2∂
2
ξ [a3(∂2

xΛ̃ − (∂xΛ̃)2)] + q3 + r∞

)
◦ op

(
1 − i∂ξ∂xΛ̃ − 1

2∂
2
ξ (∂2

xΛ̃ − [∂xΛ̃]2) − [∂ξ∂xΛ̃]2 + q−3

)
= ia3(t,D) + op

(
−∂ξ(a3∂xΛ̃) + i

2∂
2
ξ{a3(∂2

xΛ̃ − {∂xΛ̃}2)} + a3∂ξ∂xΛ̃ − i∂ξa3∂ξ∂
2
xΛ̃

)
+ op

(
i∂ξ(a3∂xΛ̃)∂ξ∂xΛ̃ − i

2a3{∂2
ξ (∂2

xΛ̃ + [∂xΛ̃]2) + 2[∂ξ∂xΛ̃]2} + r̃0

)
= ia3(t,D) + op

(
−∂ξa3∂xΛ̃ + i

2∂
2
ξ{a3[∂2

xΛ̃ − (∂xΛ̃)2]} − i∂ξa3∂ξ∂
2
xΛ̃

)
+ op

(
i∂ξ(a3∂xΛ̃)∂ξ∂xΛ̃ − i

2a3{∂2
ξ (∂2

xΛ̃ + [∂xΛ̃]2) + 2(∂ξ∂xΛ̃)2} + r̃0

)
,

where r̃0 ∈ C([0, T ]; ̃Γ0
θ(R2)). From now on we are going to denote by r̃0 all remainders of class 

C([0, T ]; ̃Γ0
θ(R2)) satisfying uniform estimates with respect to u ∈ Ω. Writing Λ̃ = λ2 + λ1 and noticing 

that Dxλ1 has order −1 we get

eΛ̃(x,D)ia3(t,D){eΛ̃(x,D)}−1 = ia3(t,D)

+ op
(
−∂ξa3∂xλ2 − ∂ξa3∂xλ1 + i

2∂
2
ξ{a3(∂2

xλ2 − {∂xλ2}2)} − i∂ξa3∂ξ∂
2
xλ2

)
+ op

(
i∂ξ(a3∂xλ2)∂ξ∂xλ2 −

i

2a3{∂2
ξ (∂2

xλ2 + [∂xλ2]2) + 2[∂ξ∂xλ2]2} + r̃0

)
.

For simplicity we write in short

d1(t, x, ξ) = 1
2∂

2
ξ{a3(∂2

xλ2 − {∂xλ2}2)} − ∂ξa3∂ξ∂
2
xλ2

+ ∂ξ(a3∂xλ2)∂ξ∂xλ2 −
1
2a3{∂2

ξ (∂2
xλ2 + [∂xλ2]2) + 2[∂ξ∂xλ2]2}.

Hence

eΛ̃(x,D)ia3(t,D){eΛ̃(x,D)}−1 = ia3(t,D) + op (−∂ξa3∂xλ2 − ∂ξa3∂xλ1 + id1 + r̃0) .

Notice that d1 is a real valued symbol of order 1 which does not depend on λ1. Namely, we have the 
following estimates: for every A > 0 there exists Cλ2,A > 0 such that

|∂α
ξ ∂

β
xd1(t, x, ξ)| ≤ Cλ2,AA

α+βα!θβ!θ〈ξ〉1−α〈x〉−σ. (3.10)
h
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• Conjugation of ia2(t, x, u, D): for N ∈ N such that 2 −N(2σ − 1) ≤ 0, Theorem 2.9 and (3.9) give

eΛ̃(x,D) ◦ ia2(t, x, u,D) ◦ R{e−Λ̃(x,D)} = ia2(t, x, u,D)

+ op

⎛⎝ ∑
1≤α+β<N

1
α!β!∂

α
ξ {∂β

ξ e
Λ̃Dβ

x ia2D
α
x e

−Λ̃}

⎞⎠
︸ ︷︷ ︸

=:(ia2)N

+r̃0.

Composing with the Neumann series and using the fact that ∂xλ1 has order −1 we get

eΛ̃(x,D) ◦ ia2(t, x, u,D) ◦ {eΛ̃(x,D)}−1 = op(ia2 + (ia2)N + r̃0 + r̃) ◦ op(1 − i∂ξ∂xλ2 + q−2)

= ia2(t, x, u,D) + op((ia2)N + a2 ◦ ∂ξ∂xλ2 − i(ia2)N ◦ ∂ξ∂xλ2 + r̃0)

= ia2(t, x, u,D) + op((ia2)N − i(ia2)N∂ξ∂xλ2︸ ︷︷ ︸
=:(ia2)Λ̃

+a2∂ξ∂xλ2 + r̃0).

Moreover, in view of (3.9), we have the following estimates: for every A > 0 there exists CΛ̃,Ω,A > 0
such that

|∂α
ξ ∂

β
x (ia2)Λ̃(t, x, u, ξ)| ≤ CΛ̃,Ω,AA

α+βα!θβ!θ〈ξ〉2−(2σ−1)−α
h 〈x〉−σ, (3.11)

for every u ∈ Ω.
• Conjugation of ia1(t, x, u, D): working as in the previous conjugation, we get

eΛ̃(x,D) ◦ (ia1)(t, x, u,D) ◦ {eΛ̃(x,D)}−1 = op(ia1 + (ia1)Λ̃ + r1) ◦
∑
j≥0

(−r(x,D))j

= ia1(t, x, u,D) + op((ia1)Λ̃ + r̃0),

where we have the following estimates: for every A > 0 there exists CΛ̃,Ω,A > 0 such that for every 
u ∈ Ω:

|∂α
ξ ∂

β
x (ia1)Λ̃(t, x, u, ξ)| ≤ CΛ̃,Ω,AA

α+βα!θβ!θ〈ξ〉2(1−σ)−α
h 〈x〉−σ/2. (3.12)

• Conjugation of ia0(t, x, u): eΛ̃(x, D) ◦ (ia0)(t, x, u) ◦ {eΛ̃(x, D)}−1 = r̃0.

Gathering all the previous computations we get (omitting (t, x, u, D) in the notation)

eΛ̃(x,D)(iPu){eΛ̃(x,D)}−1 = ∂t + ia3(t,D) + op (−∂ξa3∂xλ2 − ∂ξa3∂xλ1 + id1)

+ ia2(t, x, u,D) + op((ia2)Λ̃ + a2∂ξ∂xλ2) + ia1(t, x, u,D) + op((ia1)Λ̃ + r̃0),

where d1, (ia2)Λ̃ and (ia1)Λ̃ satisfy the estimates (3.10), (3.11), (3.12) for every u ∈ Ω.

3.3.2. Conjugation by eΛρ′,k(t, D), with Λρ′,k(t, ξ) = ρ′〈ξ〉
1
θ

h + k(T − t)〈ξ〉2(1−σ)
h

• Conjugation of ∂t: eΛρ′,k(t, D) ◦ ∂t ◦ e−Λρ′,k(t, D) = ∂t + k〈D〉2(1−σ)
h .

• Conjugation of ia3(t, D): since a3 does not depend on x, we simply have

eΛρ′,k(t,D) ◦ ia3(t,D) ◦ e−Λρ′,k(t,D) = ia3(t,D).
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• Conjugation of op{ia2 − ∂ξa3∂xλ2}:

eΛρ′,k(t,D) ◦ op(ia2 − ∂ξa3∂xλ2) ◦ e−Λρ′,k(t,D) = ia2(t, x, u,D)

− op(∂ξa3∂xλ2) + (b2,ρ′,k + r̃0)(t, x, u,D)

where b2,ρ′,k satisfies: for any A > 0 there exists Cλ2,Ω,ρ′,k,A > 0 such that (for every u ∈ Ω)

|∂α
ξ ∂

β
x b2,ρ′,k(t, x, u, ξ)| ≤ Cλ2,Ω,ρ′,k,AA

α+β(α!β!)θ〈ξ〉2−(1− 1
θ )−α

h 〈x〉−σ. (3.13)

• Conjugation of (ia2)Λ̃(t, x, u, D):

eΛρ′,k(t,D) ◦ (ia2)Λ̃(t, x, u,D) ◦ e−Λρ′,k(t,D) = {(ia2)ρ′,k,Λ̃ + r̃0}(t, x, u,D),

where (ia2)ρ′,k,Λ̃ satisfies: for any A > 0 there exists CΛ̃,Ω,ρ′,k,A > 0 such that (for every u ∈ Ω)

|∂α
ξ ∂

β
x (ia2)ρ′,k,Λ̃(t, x, u, ξ)| ≤ CΛ̃,Ω,ρ′,k,AA

α+β(α!β!)θ〈ξ〉2−(2σ−1)−α
h 〈x〉−σ. (3.14)

• Conjugation of op{ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2}: we have

eΛρ′,k(t,D) ◦ op(ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2) ◦ e−Λρ′,k(t,D)

= op(ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2 + b1,ρ′,k + r̃0),

where b1,ρ′,k satisfies: for any A > 0 there exists CΛ̃,Ω,ρ′,k,A > 0 such that (for every u ∈ Ω)

|∂α
ξ ∂

β
x b1,ρ′,k(t, x, u, ξ)| ≤ CΛ̃,Ω,ρ′,k,AA

α+β(α!β!)θ〈ξ〉1−(1− 1
θ )−α

h 〈x〉−σ/2. (3.15)

• Conjugation of (ia1)Λ̃(t, x, u, D):

eΛρ′,k(t,D) ◦ (ia1)Λ̃(t, x, u,D) ◦ e−Λρ′,k(t,D) = {(ia1)ρ′,k,Λ̃ + r̃0}(t, x, u,D),

where (ia1)ρ′,k,Λ̃ satisfies: for any A > 0 there exists CΛ̃,Ω,ρ′,k,A > 0 such that (for every u ∈ Ω)

|∂α
ξ ∂

β
x (ia1)ρ′,k,Λ̃(t, x, u, ξ)| ≤ CΛ̃,Ω,ρ′,k,AA

α+β(α!β!)θ〈ξ〉2(1−σ)−α
h 〈x〉−σ/2. (3.16)

Finally, gathering all the previous computations we obtain the following expression for the conjugated 
operator (provided that the parameter h is sufficiently large)

QΛ̃,k,ρ′(iPu)Q−1
Λ̃,k,ρ′ = ∂t + k〈D〉2(1−σ)

h + ia3(t,D) (3.17)

+ op(ia2 − ∂ξa3∂xλ2 + b2,ρ′,k + (ia2)ρ′,k,Λ̃)

+ op(ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2 + b1,ρ′,k + (ia1)ρ′,k,Λ̃)

+ r̃0(t, x, u,D),

where b2,ρ′,k satisfies (3.13), (ia2)ρ′,k,Λ̃ satisfies (3.14), b1,ρ′,k satisfies (3.15), (ia1)ρ′,k,Λ̃ satisfies (3.16), r̃0
is a projective symbol of order zero satisfying uniform estimates with respect to u ∈ Ω.
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3.4. Proof of Theorem 3.1

This Subsection is devoted to the proof of Theorem 3.1. First of all we need some estimates from below 
for the terms appearing in the operator (3.17) in order to apply to these terms Fefferman-Phong and sharp 
Gårding inequalities. Let us start with the terms ∂ξa3(t, ξ)∂xλj(x, ξ) = 3a3(t)ξ2∂xλj(x, ξ), j = 1, 2.
For |ξ| > 2h, by (3.4) and (3.5) we have

−∂ξa3∂xλ2(x, ξ) = 3M2|a3(t)|ξ2〈x〉−σψ

(
〈x〉
〈ξ〉2h

)
= 3M2|a3(t)|ξ2〈x〉−σ − 3M2|a3(t)|ξ2〈x〉−σ

[
1 − ψ

(
〈x〉
〈ξ〉2h

)]
,

−∂ξa3∂xλ1(x, ξ) = 3M1|a3(t)|ξ2〈ξ〉−1
h 〈x〉−σ

2 ψ

(
〈x〉
〈ξ〉2h

)
= 3M1|a3(t)|ξ2〈ξ〉−1

h 〈x〉−σ
2 − 3M1|a3(t)|ξ2〈ξ〉−1

h 〈x〉−σ
2

[
1 − ψ

(
〈x〉
〈ξ〉2h

)]
.

Since 〈x〉 ≥ 1
2 〈ξ〉2h on the support of (1 − ψ)(〈x〉〈ξ〉−2

h ), we have

−3M2|a3(t)|ξ2〈x〉−σ

[
1 − ψ

(
〈x〉
〈ξ〉2h

)]
≥ −2σ3C ′M2〈ξ〉2(1−σ)

h ,

and

−3M1|a3(t)|ξ2〈ξ〉−1
h 〈x〉−σ

2

[
1 − ψ

(
〈x〉
〈ξ〉2h

)]
≥ −2σ

2 3C ′M1〈ξ〉1−σ
h ,

where C ′ = supt∈[0,T ] |a3(t)|. In this way we may write (|ξ| > 2h)

QΛ̃,k,ρ′ ◦ (iPu) ◦Q−1
Λ̃,k,ρ′ = ∂t + ia3(t)D3

x + ã2(t, x, u,D) + ã1(t, x, u,D) + ã2(1−σ)(t, x,D) + r0(t, x, u,D),

where r0 is an operator of order 0 and

Re ã2 = −Ima2 + 3M2|a3(t)|ξ2〈x〉−σ + Re b2,ρ′,k + Re (ia2)ρ′,k,Λ̃,

Im ã2 = Rea2 + Im b2,ρ′,k + Im (ia2)ρ′,k,Λ̃,

Re ã1 = −Ima1 + 3|a3(t)|ξ2M1〈ξ〉−1
h 〈x〉−σ

2 + Rea2∂ξ∂xλ2 + Re b1,ρ′,k + Re (ia1)ρ′,k,Λ̃,

ã2(1−σ) = k〈ξ〉2(1−σ)
h − 3|a3(t)|ξ2M2〈x〉−σ

[
1 − ψ

(
〈x〉
〈ξ〉2h

)]
− 3|a3(t)|ξ2M1〈ξ〉−1

h 〈x〉−σ
2

[
1 − ψ

(
〈x〉
〈ξ〉2h

)]
.

Now we decompose iIm ̃a2 into its Hermitian and anti-Hermitian part:

iIm ã2 = iIm ã2 + (iIm ã2)∗

2 + iIm ã2 − (iIm ã2)∗

2 = HIm ã2 + AIm ã2 ;

we have that 2Re 〈AIm ã2u, u〉 = 0, while HIm ã2 has symbol

∑
α≥1

i

2α!∂
α
ξ D

α
x Im ã2 =

∑
α≥1

i

2α!∂
α
ξ D

α
xRea2︸ ︷︷ ︸+

∑
α≥1

i

2α!∂
α
ξ D

α
x{Im b2,ρ′,k + Im (ia2)ρ′,k,Λ̃}︸ ︷︷ ︸ .
=:c(t,x,u,ξ) =:e(t,x,u,ξ)
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The hypothesis on a2 implies

|∂α
ξ ∂

β
x c(t, x, u, ξ)| ≤ CΩ,AA

α+β(α!β!)θ〈ξ〉1−α
h 〈x〉−σ,

whereas from (3.13), (3.14) and using the fact that 2(1 − σ) ≤ 1
θ we obtain

|∂α
ξ ∂

β
x e(t, x, u, ξ)| ≤ CΛ̃,Ω,ρ′,k,AA

α+β(α!β!)θ〈ξ〉
1
θ

h 〈x〉−σ.

We are ready to get the desired estimates from below. Using the above decomposition we get

eΛ ◦ (iPu) ◦ {eΛ}−1 = ∂t + ia3(t)D3
x + Re ã2(t, x, u,D) + AIm ã2(t, x, u,D)

+ (ã1 + c + e)(t, x, u,D) + ã2(1−σ)(t, x,D) + r0(t, x, u,D).

Note that 〈ξ〉2h ≤ 2ξ2 provided that |ξ| > 2h. In the next we shall fix A = 1 in the estimates and we shall 
omit the dependence on A in the constants. Estimating the terms of order 2 we get

Re ã2 ≥
(
M2

3Ca3

2 − CΩ − Cλ2,Ω,ρ′,kh
−(1− 1

θ ) − CΛ̃,Ω,ρ′,kh
−(2σ−1)

)
〈ξ〉2h〈x〉−σ,

where Ca3 is the constant appearing in the statement of Theorem 1.2. For the terms of order 1 we obtain

Re (ã1 + c + e) ≥
(
M1

3Ca3

2 − CΩ − CΩ,λ2 − CΛ̃,Ω,ρ′,kh
−(1− 1

θ ) − CΛ̃,Ω,ρ′,kh
−(2σ−1)

)
〈ξ〉h〈x〉−

σ
2 .

Finally, for the terms of order ≤ 2(1 − σ) we have

Re ã2(1−σ) ≥ k〈ξ〉2(1−σ)
h − 2σ3Ca3M2〈ξ〉2(1−σ)

h − 2σ
2 3Ca3M1〈ξ〉1−σ

h

≥
(
k − 2σ3Ca3M2 − 2σ

2 3Ca3M1h
−(1−σ)

)
〈ξ〉2(1−σ)

h . (3.18)

From the previous lower bound estimates we obtain the following proposition.

Proposition 3.8. There exist constants M2, M1, k > 0 and h0 = h0(k, M2, M1, T, Ω, ρ′) > 0 such that for 
every h ≥ h0 the Cauchy problem associated to the conjugated operator (3.17) is well-posed in Hm(R) for 
every u ∈ Ω. More precisely, for any Cauchy data f̃ ∈ C([0, T ]; Hm(R)) and g̃ ∈ Hm(R), there exists a 
unique solution w ∈ C([0, T ]; Hm(R)) ∩C1([0, T ]; Hm−3(R)) such that the following energy estimate holds: 
there exists a constant CΩ,ρ′,T > 0 depending on Ω, ρ′ > 0 and T > 0 such that

‖w(t)‖2
Hm ≤ CΩ,ρ′,T

⎛⎝‖g̃‖2
Hm +

t∫
0

‖f̃(τ)‖2
Hmdτ

⎞⎠ , t ∈ [0, T ].

Proof. First we take M2 > 0 large in order to get

M2
3Ca3

2 − CΩ > 0, (3.19)

then we set M1 = M1(M2) > 0 in such a way that

M1
3Ca3 − CΩ − CΩ,λ2 > 0. (3.20)
2
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Thereafter we choose k = k(M2) > 0 such that

k − 2σ3Ca3M2 > 0. (3.21)

Making the parameter h0 large enough, we obtain

M2
3Ca3

2 − CΩ − Cλ2,Ω,ρ′,kh
−(1− 1

θ ) − CΛ̃,Ω,ρ′,kh
−(2σ−1) ≥ 0,

M1
3Ca3

2 − CΩ − CΩ,λ2 − CΛ̃,Ω,ρ′,kh
−(1− 1

θ ) − CΛ̃,Ω,ρ′,kh
−(2σ−1) ≥ 0,

k − 2σ3Ca3M2 − 2σ
2 3Ca3M1h

−(1−σ) ≥ 0.

With these choices Re ̃a2(t, x, u, ξ), Re (ã1 + c + e)(t, x, u, ξ), Re ̃a2(1−σ)(t, x, ξ) are non-negative for large |ξ|. 
Applying the Fefferman-Phong inequality, cf. [16], to Re ̃a2 we have

Re〈Re ã2(t, x, u,D)w,w〉L2 ≥ −C‖w‖2
L2 , w ∈ S (R).

By the sharp Gårding inequality, cf. [28, Theorem 4.4], we also obtain that

Re〈(ã1 + c + e)(t, x, u,D)w,w〉L2 ≥ −C‖w‖2
L2 , w ∈ S (R)

and

Re〈ã2(1 − σ)(t, x,D)w,w〉L2 ≥ −C‖w‖2
L2 , w ∈ S (R).

The constant C > 0 that we just wrote in the above inner product estimates depends on a finite number of 
seminorms of the symbols, in this way we have that C depends on Ω, ρ′, T, Λ̃ and k. As a consequence we 
get the energy estimate

d

dt
‖w(t)‖2

L2 ≤ CΩ,ρ′,T (‖w(t)‖2
L2 + ‖(iP )Λw(t)‖2

L2),

which gives the well-posedness in Hm(R). �
Remark 3.9. We underline that the assumption |a3(t)| ≥ Ca3 > 0, ∀t ∈ [0, T ] is crucial in the choice of 
M2, M1. If a3 may vanish for some t ∈ [0, T ], then some Levi type conditions are needed on a2, a1 to let the 
choice of M2, M1 work, see [4].

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Given m ∈ R and θ > 1, take f ∈ C([0, T ], Hm
ρ;θ(R)) and g ∈ Hm

ρ;θ(R) for some ρ > 0. 
Let M2, M1, k, h0 > 0 so that Proposition 3.8 holds. Since Λ̃ and k(T − t)〈·〉2(1−σ)

h have order 2(1 − σ) < 1
θ , 

we have by Proposition 2.8 that

fΛ̃,k,ρ′ := QΛ̃,k,ρ′(t, x,D)f ∈ C([0, T ];Hm(R))

gΛ̃,k,ρ′ := QΛ̃,k,ρ′(0, x,D)g ∈ Hm(R),

provided that ρ′ < ρ. Proposition 3.8 ensures that the Cauchy problem associated with the operator in (3.17), 
call it PΛ̃,k,ρ′,u, is well posed in Sobolev spaces Hm(R). Hence, there exists a unique w ∈ C([0, T ]; Hm(R))
satisfying
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{
PΛ̃,k,ρ′,uw(t, x) = fΛ̃,k,ρ′(t, x),
w(0, x) = gΛ̃,k,ρ′(x),

and

‖w(t)‖2
Hm ≤ CΩ,ρ′,T

⎛⎝‖gΛ̃,k,ρ′‖2
Hm +

t∫
0

‖fΛ̃,k,ρ′(τ)‖2
Hmdτ

⎞⎠ , t ∈ [0, T ]. (3.22)

Setting v = {QΛ̃,k,ρ′(t, x, D)}−1w we obtain a solution for the original problem (3.1). Let us now study 
which space the solution v belongs to. We have

v(t, x) = {QΛ̃,k,ρ′(t, x,D)}−1w(t, x)

= R{e−Λ̃}(x,D)
∑
j

(−r(x,D))je−k(T−t)〈D〉2(1−σ)
h e−ρ′〈D〉

1
θ
h w(t, x), w ∈ Hm(R).

Since e−ρ′〈D〉
1
θ
h w =: v1 ∈ Hm

ρ′;θ(R), we get

v(t, x) = R{e−Λ̃(x,D)}
∑
j

(−r(x,D))je−k(T−t)〈D〉2(1−σ)
h v1, v1 ∈ Hm

ρ′;θ(R),

but e−k(T−t)〈D〉2(1−σ)
h v1 = e−k(T−t)〈D〉2(1−σ)

h e−δ1〈D〉
1
θ
h︸ ︷︷ ︸

order zero

eδ1〈D〉
1
θ
h v1 =: v2 ∈ Hm

ρ′−δ1;θ(R), for every δ1 > 0, so

v(t, x) = R{e−Λ̃(x,D)}
∑
j

(−r(x,D))j︸ ︷︷ ︸
order zero

v2 = R{e−Λ̃(x,D)}v3, v3 ∈ Hm
ρ′−δ1;θ(R).

By Proposition 2.8, R{e−Λ̃(x, D)} maps Hm
ρ;θ into Hm

ρ−δ2;θ, for every δ2 > 0, hence we finally obtain (δ =
δ1 + δ2) that v(t, ·) ∈ Hm

ρ′−δ;θ(R) for all δ > 0, t ∈ [0, T ]. We remark that the solution exhibits an arbitrarily 
small loss δ in the coefficient of the exponential weight: the solution is then less regular than the Cauchy 
data. Moreover, denoting ρ′′ = ρ′ − δ, from (3.22) we obtain that v satisfies the following energy estimate

‖v(t)‖2
Hm

ρ′′;θ
= ‖{eΛ(t, ·, D)}−1w(t)‖2

Hm
ρ′′;θ

≤ Cρ′,T ‖w(t)‖2
Hm

≤ Cρ,TCΩ,ρ′,T

⎛⎝‖gΛ̃,k,ρ′‖2
Hm +

t∫
0

‖fΛ̃,k,ρ′(τ)‖2
Hmdτ

⎞⎠
≤ CΩ,ρ′,T

⎛⎝‖g‖2
Hm

ρ;θ
+

t∫
0

‖f(τ)‖2
Hm

ρ;θ
dτ

⎞⎠ , t ∈ [0, T ].

Finally, let us notice that if the data are valued in Hm
ρ;θ(R) for every ρ > 0, then the solution belongs to 

Hm
ρ′′;θ(R) for every ρ′′ ∈ (0, ρ), that is v ∈ C([0, T ]; H∞

θ (R)). �
The argument of the proof of Theorem 3.1, suitably simplified, provides a well-posedness result in projec-

tive Gevrey-Sobolev spaces also for linear 3-evolution equations, that is when the coefficients of the operator 
do not depend on u. Since also this result is new in the literature we state it here below as a separate result.
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Corollary 3.10. Let P be a linear differential operator of the form (1.7) and assume that a3 ∈ C([0, T ]; R)
is such that |a3(t)| ≥ Ca3 > 0 for all t ∈ [0, T ] and for some constant Ca3 . Let moreover σ ∈

( 1
2 , 1

)
and 

θ0 < 1
2(1−σ) such that for j = 0, 1, 2 the coefficients aj satisfy the following assumptions: for every A > 0

there exists CA > 0 such that

|∂β
xaj(t, x)| ≤ CAA

ββ!θ0〈x〉− jσ
2 ,

for every x ∈ R, t ∈ [0, T ] and β ∈ N0. Then for every m ∈ R, ρ > 0, θ ∈
[
θ0,

1
2(1−σ)

)
and f ∈

C([0, T ]; Hm
ρ;θ(R)), g ∈ Hm

ρ;θ(R), there exists a unique solution v ∈ C1([0, T ]; Hm
ρ−δ;θ(R)) for every δ ∈ (0, ρ)

of the Cauchy problem (1.6) and the following energy estimate is satisfied:

‖v(t, ·)‖2
Hm

ρ−δ;θ
≤ Cρ,T

⎛⎝‖g‖2
Hm

ρ;θ
+

t∫
0

‖f(τ, ·)‖2
Hm

ρ;θ
dτ

⎞⎠ ∀t ∈ [0, T ], (3.23)

for some positive constant Cρ,T . Moreover, if f ∈ C([0, T ], H∞
θ (R)) and g ∈ H∞

θ (R), then v belongs to 
C1([0, T ]; H∞

θ (R)).

4. The quasilinear problem

In this section we consider the quasilinear Cauchy problem (1.13) and prove Theorem 1.2. First of all, 
by Theorem 2.3, it is easy to verify that the space

XT := C1([0, T ];H∞
θ (R))

is a tame Fréchet space endowed with the family of seminorms

‖u‖k = sup
t∈[0,T ]

{
|u(t, ·)|k + |Dtu(t, ·)|k

}
, k ∈ N0,

for every θ > 1. Let us consider, for every u ∈ XT , the map

J(u) := u(t, x) − g(x) + i

t∫
0

a3(s)D3
xu(s, x)ds + i

t∫
0

a2(s, x, u(s, x))D2
xu(s, x)ds (4.1)

+i

t∫
0

a1(s, x, u(s, x))Dxu(s, x)ds + i

t∫
0

a0(s, x, u(s, x))u(s, x)ds

−i

t∫
0

f(s, x)ds.

Remark 4.1. By Lemma 3.7, we have aj(t, x, u(t, x))ξj ∈ C([0, T ]; Γj
θ(R2)), then from Proposition 2.7 we 

conclude that aj(s, x, u(s, x))Dj
xu(s, x) ∈ C([0, T ]; H∞

θ (R)). This implies that the map J maps XT into 
itself.

As anticipated in the introduction we shall prove the existence of a unique solution u ∈ C1([0, T ∗]; H∞
θ (R))

for some T ∗ ∈ (0, T ] of the Cauchy problem (1.13) by showing the existence of a unique solution 
u ∈ C1([0, T ∗]; H∞

θ (R)) of the integral equation
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J(u) ≡ 0 in [0, T ∗] ×R. (4.2)

This will be achieved using Theorem 2.5. It is not difficult to prove that J is tame together with all its 
derivatives. To apply the Nash-Moser Theorem we only need to prove that the equation DJ(u)v = h has a 
unique solution v := S(u, h) ∈ XT for all u, h ∈ XT and that the map

S : XT ×XT → XT : (u, h) → v = S(u, h) (4.3)

is smooth tame, where DJ(u)v stands for the derivative of J at u in the direction v.

Remark 4.2. We claim that limε→0 aj(s, x, u(s, x) −εv(s, x)) = aj(s, x, u(s, x)), where the limit is taken with 
respect to the topology of C([0, T ]; H∞

θ (R)). Indeed, first we write

aj(s, x, u + εv) − aj(s, x, u) =
ε∫

0

d

dr
{aj(s, x, u + rv)}dr

= v

ε∫
0

∂waj(s, x, u + rv)dr

= v · σε(s, x).

Observe that σε ∈ C([0, T ]; ̃Γ0
θ(R2)). Therefore, by Proposition 2.7, we get σεv ∈ C([0, T ]; H∞

θ (R)). More-
over, since the norms |σ(s)|A are bounded by a constant of the form εCΩ,A, Ω being a bounded neighborhood 
of u, we are able to conclude

|σε(s, x)v|k → 0, as ε → 0,

for every k ∈ N0, which finalizes the proof of our claim. In the same manner one gets

lim
ε→0

aj(s, x, u(s, x) + εv(s, x)) − aj(s, x, u(s, x))
ε

= ∂waj(s, x, u(s, x))v(s, x)

in C([0, T ], H∞
θ (R)). We shall use extensively these two types of limits in the sequel.

Proposition 4.3. For every u, h ∈ XT , there exists a unique v ∈ XT solution of the equation DJ(u)v = h, 
and the function v satisfies for every k ∈ N the following estimate:

|v(t, ·)|2k ≤ CΩ,k,T

⎛⎝|h(0)|2k+1 +
t∫

0

|Dth(τ, ·)|2k+1 dτ

⎞⎠ , ∀t ∈ [0, T ], (4.4)

where Ω stands for some bounded open neighborhood of u.

Proof. By the definition (4.1) of the map J , let us compute the derivative of J , for u, v ∈ XT :

DJ(u)v = lim
ε→0

J(u + εv) − J(u)
ε

= lim
ε→0

{
v + i

t∫
a3(s)D3

xv(s)ds + i

2∑
j=0

t∫
aj(s, x, u + εv) − aj(s, x, u)

ε
Dj

xu(s)ds

0 0
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+i
2∑

j=0

t∫
0

aj(s, x, u + εv)Dj
xv(s)ds

}

= v + i

t∫
0

a3(s)D3
xv(s)ds + i

2∑
j=0

t∫
0

(∂waj)(s, x, u)v(s)Dj
xu(s)ds

+i

2∑
j=0

t∫
0

aj(s, x, u)Dj
xv(s)ds

= v + i

t∫
0

a3(s)D3
xv(s)ds + i

t∫
0

a2(s, x, u)D2
xv(s)ds + i

t∫
0

a1(s, x, u)Dxv(s)ds

+i

t∫
0

(
a0(s, x, u) +

2∑
j=0

(∂waj)(s, x, u)Dj
xu

)
︸ ︷︷ ︸ v(s)ds =: J0,u,0(v)

:= ã0(s, x, u)

where, given u, g, f ∈ XT , the map Jg,u,f : XT → XT is defined by

Jg,u,fv := v(t, x) − g(x) + i

t∫
0

a3(s)D3
xv(s, x)ds + i

t∫
0

a2(s, x, u(s, x))D2
xv(s, x)ds

+i

t∫
0

a1(s, x, u(s, x))Dxv(s, x)ds + i

t∫
0

ã0(s, x, u(s, x))v(s, x)ds− i

t∫
0

f(s, x)ds.

Of course, v solves Jg,u,f (v) ≡ 0 if and only if it solves the linearized Cauchy problem{
P̃u(D)v(t, x) = f(t, x)
v(0, x) = g(x),

where P̃u(D) is obtained from Pu(D) substituting a0 with ã0.
Writing

J0,u,0(v) − h = J0,u,0(v) − h0 − i

t∫
0

Dth(s, x)ds = Jh0,u,Dth(v)

with h0 := h(0, x), we see that v is a solution of DJ(u)v = h if and only if it is a solution of Jh0,u,Dth(v) = 0, 
or equivalently of the linearized Cauchy problem{

P̃u(D)v(t, x) = Dth(t, x)
v(0, x) = h0(x).

(4.5)

Summing up, the solutions to DJ(u)v = h in XT coincide with the solutions to (4.5).
The Cauchy problem (4.5) fulfills the assumptions of Theorem 3.1, indeed, on one hand the operators Pu(D)
and P̃u(D) have the same coefficients but for the terms of order 0 for which no decay assumptions are 
required; on the other hand, clearly Dth ∈ C([0, T ]; H∞

θ (R)) and h0 ∈ H∞
θ (R). We obtain by Theorem 3.1
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a unique solution v ∈ C([0, T ]; H∞
θ (R)) of (4.5) which satisfies an energy estimate of the form (3.2) for every 

ρ, δ > 0 with 0 < δ < ρ. Taking ρ = k + 1 and δ = 1 in (3.2), k ∈ N, we obtain (4.4). �
Lemma 4.4. The map S defined by (4.3) is smooth tame.

Proof. We have to prove that S and its derivatives DmS are tame maps for any positive integer m. Let us 
first prove that S is tame. First of all, notice that if we take u in a bounded set Ω ⊂ XT , from (4.4) we get

sup
t∈[0,T ]

|v(t, ·)|k ≤ CΩ,k,T ‖h‖k+1 (4.6)

for every k ∈ N and for some CΩ,k,T > 0. Moreover, from the equation it follows that

|Dtv(t, ·)|k =

∣∣∣∣∣∣−a3(t)D3
xv(t, ·) −

2∑
j=1

aj(t, ·, u)Dj
xv(t, ·) + ã0(t, ·, u)v(t, ·) + Dth(t, ·)

∣∣∣∣∣∣
k

≤ C(|v(t, ·)|k+1 + ‖h‖k)

for some C > 0 depending on the set Ω and on the coefficients. Hence

‖S(u, h)‖k = sup
t∈[0,T ]

(|v(t, ·)|k + |Dtv(t, ·)|k) ≤ CΩ,k,T ‖h‖k+1 ≤ CΩ,k,T ‖(u, h)‖k+1 (4.7)

for some (possibly larger) constant CΩ,k,T > 0, and so S is tame.
Let us now consider the first derivative of S, defined for (u, h), (u1, h1) ∈ XT ×XT as

DS(u, h)(u1, h1) = lim
ε→0

S(u + εu1, h + εh1) − S(u, h)
ε

= lim
ε→0

vε − v

ε
= lim

ε→0
wε,

where wε := ε−1(vε − v) and vε = S(u + εu1, h + εh1) is the solution of the Cauchy problem{
P̃u+εu1(D)v = Dt(h + εh1)
v(0, x) = h(0, x) + εh1(0, x).

(4.8)

Since vε, v solve the Cauchy problems (4.5) and (4.8) respectively, it is easy to check that the function wε

satisfies {
P̃u+εu1wε = fε

wε(0, x) = h1(0, x)
(4.9)

with (omitting (t, x) in the notation for brevity’s sake)

fε := Dth1 −
a2(u + εu1) − a2(u)

ε
D2

xv −
a1(u + εu1) − a1(u)

ε
Dxv −

ã0(u + εu1) − ã0(u)
ε

v.

If we prove that the sequence {wε}ε is a Cauchy sequence in XT , then we obtain that wε converges to some 
w in XT ; this function w, which is on one hand the first derivative of S, is on the other hand the solution 
to {

P̃u(D)w = f1

w(0, x) = h (0, x)
1
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with

f1 := lim
ε→0

fε = Dth1 − ∂wa2(u)u1D
2
xv − ∂wa1(u)u1Dxv − ∂wã0(u)u1v,

so, taking u in a bounded set Ω, by Theorem 3.1 it satisfies the energy estimate

|w(t, ·)|2k ≤ CΩ,k,T

(
|h1(0, ·)|2k+1 +

t∫
0

|f1(τ, ·)|2k+1dτ
)
.

Now if we take u1 in a bounded set Ω1, by (4.6) we get

|w(t, ·)|k ≤ CΩ,k,T (|h1(0, ·)|k+1 + sup
t∈[0,T ]

|f1(t, ·)|k+1)

≤ CΩ,Ω1,k,T sup
t∈[0,T ]

(|h1(t, ·)|k+1 + |Dth1(t, ·)|k+1 + |v(t, ·)|k+2)

≤ CΩ,Ω1,k,T (‖h1‖k+1 + ‖h‖k+3)

for some positive constant CΩ,Ω1,k,T depending on Ω, Ω1, k, T and on the coefficients. Also

Dtw = −a3(t)D3
xw − a2(t, x, u)D2

xw − a1(t, x, u)Dxw − ã0(t, x, u)w + f1

satisfies a similar estimate, so the first derivative DS (coinciding with w) is tame.
Thus, we only need to prove that {wε}ε∈[0,1] is a Cauchy sequence in XT to conclude that DS is a tame 
map.
To this aim, arguing as before, let us consider wε1 and wε2 solutions of the Cauchy problems

P̃u+εiu1(D)wεi = fεi , wεi(0, x) = h1(0, x), i = 1, 2;

then wε1 − wε2 solves {
P̃u+ε1u1(D)(wε1 − wε2) = fε1 − fε2 + fε1,ε2

(wε1 − wε2)(0, x) = 0

with (omitting (t, x) in the notation)

fε1,ε2 : =
(
a2(u + ε2u1) − a2(u + ε1u1)

)
D2

xwε2

+
(
a1(u + ε2u1) − a1(u + ε1u1)

)
Dxwε2 +

(
ã0(u + ε2u1) − ã0(u + ε1u1)

)
wε2

and the energy estimate (3.2) gives

|(wε1 − wε2)(t, ·)|k ≤ CΩ,Ω1,k,T sup
t∈[0,T ]

(
|fε1(t, ·) − fε2(t, ·)|k+1 + |fε1,ε2(t, ·)|k+1

)
. (4.10)

By Lagrange theorem, there exist ũj , j = 0, 1, 2, between u + ε1u1 and u + ε2u1 such that, for all t ∈ [0, T ],

|fε1,ε2(t, ·)|k+1 ≤ |ε1 − ε2| sup
t∈[0,T ]

(
|∂wa2(t, ·, ũ2)u1(t, ·)D2

xwε2(t, ·)|k+1

+|∂wa1(t, ·, ũ1)u1(t, ·)Dxwε2(t, ·)|k+1 + |∂wa0(t, ·, ũ0)u1(t, ·)wε2(t, ·)|k+1)

≤ |ε1 − ε2|CΩ,Ω1,k,T |wε2 |k+2
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with CΩ,Ω1,k,T independent of ε1, ε2 ∈ [0, 1], where we used the algebra property of H∞
θ spaces: namely, 

we know that Hm
ρ,θ(R) is an algebra if m > 1/2, see for instance [12]. Hence, for every f, g ∈ H∞

θ we have 
fg ∈ H∞

θ and, taking m > n
2 we may write

‖fg‖H0
ρ;θ

≤ ‖fg‖Hm
ρ,θ

≤ C‖f‖Hm
ρ;θ

‖g‖Hm
ρ;θ

≤ C2‖f‖H0
ρ+ε;θ

‖g‖H0
ρ+ε;θ

.

From the energy inequality for the linearized problem we see that |wε|k is bounded with respect to ε ∈ [0, 1]
for every k ∈ N0. Hence fε1,ε2 → 0 as ε1, ε2 → 0 in the H∞

θ (R) topology. In the same manner one gets 
fε1 − fε2 → 0 as ε1, ε2 → 0.
This gives that {wε}ε is a Cauchy sequence in XT and therefore we can conclude that DS is a tame map. 
To conclude the proof it is sufficient to repeat the previous computations in an inductive procedure similar 
to the one in the proof of [3, Theorem 1.3, Step 4]. �

We are now ready for the final step of this paper, that is the proof of Theorem 1.2.

Proof of Theorem 1.2. As described at the beginning of this section the existence of a unique local solution 
u ∈ C1([0, T ∗]; H∞

θ (R)) of the Cauchy problem (1.13) is equivalent to the existence of a unique solution 
u ∈ C1([0, T ∗]; H∞

θ (R)) of the equation

u(t, x) = g(x) − i

t∫
0

a3(s)D3
xu(s, x)ds− i

t∫
0

a2(s, x, u(s, x))D2
xu(s, x)ds (4.11)

−i

t∫
0

a1(s, x, u(s, x))Dxu(s, x)ds− i

t∫
0

a0(s, x, u(s, x))u(s, x)ds

+i

t∫
0

f(s, x)ds.

Equation (4.11) provides the first order Taylor expansion of u:

u(t, x) = g(x) − it
(
a3(0)D3

xg(x) + a2(0, x, g(x))D2
xg(x)

+ a1(0, x, g(x))Dxg(x) + a0(0, x, g(x))g(x) − f(0, x)) + o(t)

=: w(t, x) + o(t), as t → 0. (4.12)

If t is sufficiently small, the function w ∈ XT is in a neighborhood of the solution u we are looking for. 
The idea of the proof is then the following: we first approximate Jw ∈ XT by a function φε such that 
φε(t) ≡ 0 for 0 ≤ t ≤ Tε ≤ T ; then, we apply Theorem 2.5, in particular the fact that J is a bijection of a 
neighborhood U of w onto a neighborhood V of Jw. More precisely, we show that φε ∈ V , and then by the 
local invertibility of J there will be u ∈ U such that Ju = φε ≡ 0 in [0, Tε] and hence u is the local in time 
solution of the Cauchy problem (1.13). Let us construct φε: given ρ ∈ C∞(R) with 0 ≤ ρ ≤ 1 and

ρ(s) =
{

0, s ≤ 1
1, s ≥ 2,

we define

φε(t, x) :=
t∫
ρ
(s
ε

)
(∂tJw)(s, x)ds. (4.13)
0
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We immediately see that φε ≡ 0 for 0 ≤ t ≤ ε. We are going to prove that, for every fixed neighborhood V
of Jw in XT = C1([0, T ]; H∞(R)), we have φε ∈ V if ε is sufficiently small. To this aim let us notice that

Jw(t) − φε(t) =
t∫

0

(∂tJw)(s)ds + Jw(0)︸ ︷︷ ︸
=0

−
t∫

0

ρ
(s
ε

)
(∂tJw)(s)ds =

t∫
0

[
1 − ρ

(s
ε

)]
(∂tJw)(s)ds.

Hence

‖Jw − φε‖k ≤
2ε∫
0

|(∂tJw)(s)|k ds + sup
t∈[0,2ε]

|(∂tJw)(t)|k. (4.14)

Now we compute explicitly ∂t(Jw(t, x)) and estimate its k-seminorms for small values of t. From (4.1) we 
get

∂t(Jw(t, x)) = ∂tw + ia3(t)D3
xw +

2∑
j=0

iaj(t, x, w)Dj
xw − if(t, x).

Using the definition of w in (4.12) we get

∂t(Jw(t, x)) = −ia3(0)D3
xg −

2∑
j=0

iaj(0, x, g)Dj
xg + if(0, x)

+ia3(t)D3
xg + ta3(t)D3

x

(
a3(0)D3

xg +
2∑

j=0
aj(0, x, g)Dj

xg − f(0, x)
)

+ia2(t, x, w)D2
xg + ta2(t, x, w)D2

x

(
a3(0)D3

xg +
2∑

j=0
aj(0, x, g)Dj

xg − f(0, x)
)

+ia1(t, x, w)Dxg + ta1(t, x, w)Dx

(
a3(0)D3

xg +
2∑

j=0
aj(0, x, g)Dj

xg − f(0, x)
)

+ia0(t, x, w)g + ta0(t, x, w)
(
a3(0)D3

xg +
2∑

j=0
aj(0, x, g)Dj

xg − f(0, x)
)

−if(t, x)

= i[a3(t) − a3(0)]D3
xg + i

2∑
j=0

[
aj(t, x, w) − aj(0, x, g)

]
Dj

xg

+a3(t)tD3
x

[
a3(0)D3

xg +
2∑

j=0
aj(0, x, g)Dj

xg − f(0, x)
]

+
2∑

j=0
aj(t, x, w)tDj

x

[
a3(0)D3

xg +
2∑

s=0
as(0, x, g)Ds

xg − f(0, x)
]

+i
(
f(0, x) − f(t, x)

)
.

Now observe that for every k ∈ N0 we have:
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• for every ε3 > 0 there exists δ3 > 0 depending on g, a3 and k such that |(a3(t) − a3(0))D3
xg|k ≤ ε3 for 

every t ∈ [0, δ3], since a3 is continuous;
• for every ε2 > 0 there exists δ2 > 0 depending on g, a0, a1, a2 and k such that

2∑
j=0

| (aj(t, x, w) − aj(0, x, g))Dj
xg|k ≤ ε2

for every t ∈ [0, δ2], since (t, x) �→ aj(t, x, w(t, x)) belongs to C([0, T ]; γθ(R)) and henceforth (t, x) �→
aj(t, x, w(t, x))ξj belongs to C([0, T ]; Γj

θ(R2));

• t sup
t∈[0,T ]

|a3(t)| · |a3(0)D6
xg +

2∑
j=0

D3
x(aj(0, x, g)Dj

xg) −D3
xf(0, x)|k ≤ C(a3, a2, a1, a0, g, f, k)t;

• t 
2∑

j=0

∣∣∣∣∣aj(t, x, w)Dj
x

(
a3(0)D3

xg +
2∑

s=0
as(0, x, g)Ds

xg − f(0, x)
)∣∣∣∣∣

k

≤ C(a3, a2, a1, a0, g, f, k)t;

• since f ∈ C([0, T ]; H∞
θ (R)), then for every ε1 > 0 there exist δ1 > 0 depending on f and k such that 

|f(0, x) − f(t, x)|k ≤ ε1 for every t ∈ [0, δ1].

In this way we are able to conclude that for every ε̃ > 0 there exists δ̃k depending on ε̃, k, f, g and on the 
coefficients such that

|(∂tJw)(t)|k ≤ ε̃, ∀ t ∈ [0, δ̃k].

If 2ε < δ̃k, from (4.14) we obtain

‖Jw − φε‖k ≤ 2ε̃.

Now let V be an open neighborhood of Jw. Recalling that the topology of XT is defined by the metric

d(u, v) =
∑
k≥0

1
2k+1

‖u− v‖k
1 + ‖u− v‖k

, ∀u, v ∈ XT ,

we see that there exists r > 0 such that the ball {d(u, Jw) < r : u ∈ XT } ⊂ V . Take K ∈ N0 such that ∑
k>K 2−(k+1) ≤ r

2 and choose ε̃ > 0 such that ε̃ < r
4K . Then, if 2ε < δ̃ = min

0≤k≤K
δ̃k we infer that

d(Jw, φε) ≤
∑
k≤K

‖Jw − φε‖k +
∑
k>K

1
2k+1 ≤ r

2 + r

2 = r.

So, if ε > 0 is sufficiently small then φε ∈ V .
Now suppose in addition that V = J(U) where U is an open neighborhood of w and that J : U → V is 
bijective. Then there exists u ∈ U such that Ju = φε. In particular, this proves that u ∈ C1([0, ε]; H∞

θ (R))
is a local solution of the Cauchy problem (1.13). Uniqueness follows by standard arguments. Indeed, if u, v
are two solutions of the Cauchy problem (1.13), then w := u − v solves the linear Cauchy problem

˜̃Pw = 0, w(0, x) = 0,

for an operator ˜̃P which is exactly as Pu(D) except for the term a0 which is substituted by another term 
satisfying the same assumptions. From the uniqueness of the solution to the linearized Cauchy problem we 
get w = 0, that is u = v.
To prove that T ∗(g, f) is a lower semi-continuous function of the initial data g, f we follow the ideas 
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presented in [13]. Let us assume ũ to be the solution of (1.13) with initial data g̃, f̃ and life span T̃ ≤ T . 
Then we consider the map

Q : C1([0, T̃ ];H∞
θ (R)) → H∞

θ (R) × C([0, T̃ ];H∞
θ (R))

defined by Q(u) = (u(0), Puu) for all u ∈ C1([0, T̃ ]; H∞
θ (R)).

The derivative of Q is DQ(u)v = (v(0), P̃uv) where P̃u is the operator

P̃u = Dt + D3
x + a2(t, x, u)D2

x + a1(t, x, u)Dx + ã0(t, x, u),

ã0(t, x, u) = a0(t, x, u) +
2∑

j=0
(∂waj)(t, x, u)Dj

xu.

So, the equation DQ(u)v = (h, w) is equivalent to the following linear Cauchy problem{
P̃uv = w

v(0) = h.
, t ∈ [0, T̃ ], x ∈ R.

Hence, similarly to what we did for the map J defined by (4.1), we can show that Q is locally invertible. 
Therefore we obtain open neighborhoods Ug̃ of g̃, Uf̃ of f̃ and Uũ of ũ such that for all (g, f) ∈ Ug̃ × Uf̃

there exists a unique u ∈ Uũ satisfying Q(u) = (g, f), that is (u(0), Puu) = (g, f). This means that u
solves the Cauchy problem for every (t, x) ∈ [0, T̃ ] × R. In particular, the life span T ∗(g, f) is not smaller 
than T̃ provided that (g, f) is close enough to (g̃, f̃), so T ∗(g, f) is a lower semi-continuous function in the 
H∞

θ (R) × C([0, T̃ ]; H∞
θ (R)) topology. �

Remark 4.5. We stress the fact that the life span T ∗ may be small. In fact, we need T ∗ = ε small enough 
in order to conclude that the function φε (defined by (4.13)) belongs to some suitable open neighborhood 
of Jw (w given by (4.12)) provided by the Nash-Moser theorem.

Remark 4.6. In Theorem 1.2 we assume that the coefficient of the third order term is independent of x. 
Indeed, if a3 depends on x, even allowing its derivatives with respect to x to decay like 〈x〉−m for m >> 0, 
we obtain

eρ
′〈D〉1/θ (ia3(t, x)D3

x)e−ρ′〈D〉1/θ = ia3(t, x)D3
x + op

(
ρ′∂ξ〈ξ〉

1
θ · ∂xa3(t, x)ξ3

)
+ l.o.t

with ρ′∂ξ〈ξ〉
1
θ · ∂xa3(t, x)ξ3 ∼ 〈ξ〉2+ 1

θ 〈x〉−m. This term has order 2 + 1
θ > 2 and cannot be controlled by 

other lower order terms whose order does not exceed 2.
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