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Abstract. We consider a quasilinear degenerate parabolic equation driven by the orthotropic p−Laplacian.

We prove that local weak solutions are locally Lipschitz continuous in the spatial variable, uniformly in time.
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1. Introduction

1.1. Aim of the paper. Let Ω ⊂ RN be an open bounded set and I ⊂ R an open bounded interval. We
study the gradient regularity of local weak solutions to the following parabolic equation

(1.1) ut =

N∑
i=1

(
|uxi |p−2 uxi

)
xi
, in I × Ω.

Evolution equations of this type have been studied since the 60’s of the previous century, especially by
the Soviet school, see for example the paper [27] by Vishik. Equation (1.1) also explicitely appears in the
monographs [21], [23, Example 4.A, Chapter III] and [29, Example 30.8], among others.

In this paper, we will focus on the case p ≥ 2. We first observe that (1.1) looks quite similar to the more
familiar one

(1.2) ut = ∆pu, in I × Ω,

which involves the p−Laplace operator

∆pu =

N∑
i=1

(
|∇u|p−2 uxi

)
xi
.
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Indeed, both parabolic equations are particular instances of equations of the type

ut = div∇F (∇u)

with F : RN → R a convex function which satisfies the structural conditions

〈∇F (z), z〉 ≥ 1

C
|z|p and |∇F (z)| ≤ C |z|p−1, for every z ∈ RN .

Then, the basic regularity theory equally applies to both (1.1) and (1.2). The standard reference in the
field is DiBenedetto’s monograph [12], where one can find boundedness results for the solution u (see [12,
Chapter V]), Hölder continuous estimates for u (see [12, Chapter III]), as well as Harnack inequality for
positive solutions (see [12, Chapter VI]). At a technical level, there is no distinction to be made between
(1.1) and (1.2).

In contrast, when coming to the regularity of ∇u (i.e. boundedness and continuity), the situation becomes
fairly more complicated. Let us start from (1.2). DiBenedetto and Friedman [14] have proved that the
gradients of solutions to this equation are bounded. This is the starting point to obtain the continuity of
the gradients for any

p >
2N

N + 2
.

We refer again to DiBenedetto’s book for a comprehensive collection of results on the subject, notably to
[12, Chapter VIII]. Since then, there has been a growing literature concerning the regularity for nonlinear,
possibly degenerate or singular, parabolic equations (or systems), the main model of which is given by the
evolutionary p−Laplacian equation (1.2). Without any attempt to completeness, we can just mention some
classical references [8, 9, 13, 15, 28], up to the most recent contributions on the subject, given by [2, 18, 19],
among others.

However, none of these results apply to our equation (1.1). Indeed, all of them rely on the fact that the
loss of ellipticity of the operator div∇F is restricted to a single point, since the Hessian D2F behaves as in
the model case (1.2)

〈D2F (z) ξ, ξ〉 ≥ 1

C
|z|p−2 |ξ|2,

where the elliptic character is lost only for z = 0. Such a property dramatically breaks down for our equation
(1.1). Indeed, in this case, the function F has the following orthotropic structure

(1.3) F (z) =
1

p

N∑
i=1

|zi|p, for every z ∈ RN .

The Hessian matrix of F now degenerates on an unbounded set, namely the set of those z ∈ RN such that
one component zi is 0. As a consequence, the aforementioned references do not provide any regularity results
for the gradients of the solutions.

The main goal of the present paper is to prove the L∞ bound on ∇u for our equation (1.1), thus extending
the result by DiBenedetto and Friedman to this more degenerate setting. In order to do this, we will need
to adapt to the parabolic setting the machinery that we developed in [3, 4, 5, 6] and [7], for degenerate
equations with orthotropic structure. Indeed, the operator

N∑
i=1

(
|uxi |p−2 uxi

)
xi
,

that we called orthotropic p−Laplacian, is the prominent example of this kind of equations. We also refer
to [11] for an approach to the regularity theory for this operator, based on viscosity techniques.
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1.2. Main result. In this paper, we establish the following regularity result which can be seen as the
parabolic counterpart of our previous result [5, Theorem 1.1] for the elliptic case. In the statement below,
the notation ∇u refers to the spatial variables, i. e. ∇u = (ux1 , . . . , uxN ).

Main Theorem. Let p > 2 and let u ∈ Lploc(I;W 1,p
loc (Ω)) be a local weak solution of (1.1). Then ∇u ∈

L∞loc(I × Ω). More precisely, for every parabolic cube

Qτ,R(t0, x0) := (t0 − τ, t0)× (x0 −R, x0 +R)N b I × Ω,

and every 0 < σ < 1, we have

‖∇u‖L∞(Qστ,σR(t0,x0)) ≤ C
1

(1− σ)
N+2

2

( τ

R2

) 1
2

( 
Qτ,R(t0,x0)

|∇u|p dt dx

) 1
2

+ C

(
(1− σ)

R2

τ

) 1
p−2

,

(1.4)

for a constant C = C(N, p) > 0.

Remark 1.1 (Scalings). We observe that the equation (1.1) is invariant with respect to the “horizontal”
and “vertical” scale changes

uλ,µ(t, x) = µu(µp−2 λp t, λ x),

for every λ, µ > 0. Then it is easily seen that the a priori estimate (1.4) is invariant with respect to these scale
changes. We point out that such estimate is the exact analogue of that for the evolutionary p−Laplacian, see
[12, Theorem 5.1, Chapter VIII]. Occasionally, in the paper we will work with anisotropic parabolic cubes
of the type

QR(t0, x0) = (t0 −Rp, t0)× (x0 −R, x0 +R)N .

The choice of cubes of this type could be loosely justified by a dimensional analysis of the equation. Indeed,
by considering the quantity u as dimensionless and using the family of scalings

(t, x) 7→ (λp t, λ x), for every λ > 0,

we get the relation
time ∼ (length)p.

However, as it is well-known, estimates on cubes of the type QR are too restrictive when looking at C0,α

estimates for ∇u. Indeed, in light of the so-called intrinsic geometry, it is much more important to work with
local estimates on cubes Qτ,R, where the time scale τ is adapted to the solution itself: roughly speaking, we
can take

τ ∼ R2 |∇u|p−2.

This explains the importance of having (1.4) with two independent scales R and τ . We refer to [12, Chapter
VIII] for a description of the method of intrinsic scalings, where these heuristics are clarified.

Remark 1.2 (Case 1 < p ≤ 2). When p = 2, the orthotropic parabolic equation (1.1) boils down to the
standard heat equation, for which solutions are well-known to be smooth. For this reason, in our statement
we restrict our attention to the case p > 2. However, we point out that by making the choice τ = R2 and
taking the limit as p goes to 2 in (1.4), we formally end up with the classical gradient estimate for solutions
of the heat equation

‖∇u‖L∞(QσR2,σR(t0,x0)) ≤
C

(1− σ)
N+2

2

( 
QR2,R(t0,x0)

|∇u|2 dt dx

) 1
2

.

In light of the previous remark, in the case p = 2 the relation

time ∼ (length)2,

is now the natural one.
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As for the singular case p < 2, this is somehow simpler than its degenerate counterpart. In this case,
the local Lipschitz regularity of solutions to (1.1) can be directly inferred from [22, Theorem 1], under the
restriction

p >
2N

N + 2
.

Indeed, the result of [22] covers (among others) the case of parabolic equations of the form

ut = div∇F (∇u),

under the following assumptions on the convex function F

|∇F (z)| ≤ C |z|p−1 and 〈D2F (z) ξ, ξ〉 ≥ 1

C
|z|p−2 |ξ|2, for every ξ ∈ RN , z ∈ RN \ {0}.

It is not difficult to see that the orthotropic function (1.3) for p < 2 matches both requirements. Indeed,
observe that

〈D2F (z) ξ, ξ〉 = (p− 1)

N∑
i=1

|zi|p−2 |ξ|2 ≥ (p− 1) |z|p−2 |ξ|2,

thanks to the fact that p− 2 < 0. Thus in the subquadratic case, the orthotropic structure helps more than
it hurts, in a sense.

Remark 1.3 (Anisotropic diffusion). We conclude this part by observing that, more generally, one could
consider the following parabolic equation

ut =

N∑
i=1

(
|uxi |pi−2 uxi

)
xi
, in Ω× I,

which still has an orthotropic structure. Now we have a whole set of exponents 1 < p1 ≤ p2 ≤ . . . pN ,
one for each coordinate direction. We cite the paper [24], where some global Lipschitz regularity results are
proven for solutions of the relevant Cauchy-Dirichlet problem, under appropriate regularity assumptions on
the data. We point out that in light of their global nature, for p1 = · · · = pN = p > 2 such results are
not comparable to ours. We also refer to [10] for a sophisticated Harnack inequality for positive local weak
solutions, as well as for some further references on the problem. Finally, the very recent paper [16] contains
a thorough study of the Cauchy problem in the case pi < 2, together with some regularity results.

However, as for the counterpart of our Main Theorem for local solutions of this equation, this is still an
open problem, to the best of our knowledge.

1.3. Technical aspects of the proof. The core of the proof of the Main Theorem is an a priori Lips-
chitz estimate for smooth solutions of the orthotropic parabolic equation, see Proposition 4.1 below. More
precisely, we introduce the regularized problem

(uε)t = div ∇Fε(∇uε),

where Fε is a smooth uniformly convex approximation of the orthotropic function (1.3). By the classical
regularity theory, the maps uε are regular enough to justify all the calculations below. The goal is to establish
a local uniform Lipschitz estimate on uε, which does not depend on the regularization parameter ε. Finally,
we let ε go to 0 and prove that the family uε converges to the original solution u. This allows to obtain the
Lipschitz estimate for u itself.

In the subsequent part of this section, we emphasize the main difficulties to get such a Lipschitz estimate
on uε. In order to simplify the presentation, we drop the index ε both for Fε and uε. The strategy is
apparently quite classical: we rely on a Moser iterative scheme of reverse Hölder’s inequalities, resulting
from the interplay between Caccioppoli estimates and the Sobolev embeddings.
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To be more specific, we first differentiate the equation with respect to a spatial variable xj , so as to get
the equation solved by the j−th component of the gradient. This is given by

(1.5)

¨
I×Ω

(uxj )t ϕdt dx+

¨
I×Ω

〈(∇F (∇u))xj ,∇ϕ〉 dt dx = 0, for every ϕ ∈ C∞0 (I × Ω).

More generally, the composition of the component uxj with a non-negative convex function h is a subsolution
of this equation. Accordingly, the map h(uxj ) satisfies the Caccioppoli inequality which is naturally attached
to (1.5) (see Lemma 3.1 below). If I = (T0, T1) and τ ∈ (T0, T1), this reads as follows:

χ(τ)

ˆ
{τ}×Ω

h2(uxj ) η
2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇h(uxj ),∇h(uxj )〉χη2 dt dx

.
¨

(T0,τ)×Ω

χ′ η2 h2(uxj ) dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉h2(uxj )χdt dx.

(1.6)

Here, the maps χ ∈ C∞0 (I) and η ∈ C∞0 (Ω) are non-negative cut-off functions in the time and space variables,
respectively. We have used the following expedient notation: given f ∈ L1(I × Ω),ˆ

{τ}×Ω

f dx :=

ˆ
Ω

f(τ, x) dx, for a. e. τ ∈ I.

When F is a uniformly elliptic integrand, in the sense that

1

C
|ξ|2 ≤ 〈D2F (∇u) ξ, ξ〉 ≤ C |ξ|2, for every ξ ∈ RN ,

one can easily obtain from (1.6) a crucial “unnatural” feature of the subsolution h(uxj ); that is, a sort of

reverse Poincaré inequality where the Sobolev norm of h(uxj ) is controlled by the L2 norm of the subsolution
itself. In conjunction with the Sobolev inequality, this is the cornerstone which eventually leads to the
classical version of the Moser iterative scheme. It should be noticed that this strategy still works even in the
degenerate case, provided the Hessian behaves like

1

C
|∇u|p−2 |ξ|2 ≤ 〈D2F (∇u) ξ, ξ〉 ≤ C |∇u|p−2 |ξ|2, for every ξ ∈ RN ,

as in the case of the evolutionary p−Laplace equation (1.2). It is sufficient to use the “absorption of
degeneracy” trick, where the degenerate weight |∇u|p−2 is recombined with the subsolution h(uxj ) by means
of simple algebraic manipulations. This still permits to infer from (1.6) a control on the Sobolev norm of a
suitable convex function of uxj . This is nowadays a standard technique in the field; for the elliptic case, it
goes back to the pioneering works by Ural’tseva [26] and Uhlenbeck [25].

As we explained above, due to the severe degeneracy of D2F in our orthotropic situation, it is not possible to
follow the same path. In order to rely on such an absorption trick, we have to go through a tour de force and
to introduce a new family of weird Caccioppoli inequalities (see Lemma 3.2 below). These are the parabolic
counterparts of a corresponding estimate introduced in the elliptic setting in [3] and then fruitfully exploited
in [5].

The crucial idea is to mix together the components of the gradient with respect to 2 orthogonal directions.
This compensates the lack of ellipticity of D2F and allows to rely on the Sobolev embeddings in the iterative
scheme. We do not detail these Caccioppoli-type estimates here, but instead explain the main additional
difficulties with respect to the elliptic framework.

Let us come back for one instant to the standard Caccioppoli inequality (1.6). It follows from (1.5) by
taking ϕ = hh′(uxj )χη

2. In particular, the parabolic term is given by¨
I×Ω

(uxj )t ϕdt dx =
1

2

¨
I×Ω

(h2(uxj ))t χη
2 dt dx.
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Then an integration by parts yields¨
I×Ω

(uxj )t ϕdt dx = −1

2

¨
I×Ω

h2(uxj )χ
′ η2 dt dx.

The latter yields the “time slice” term on the left-hand side of (1.6). This way, the time derivative is
transferred to χ and one can handle the factor h2(uxj ) as in the elliptic framework.

For the weird Caccioppoli inequalities, the test function is now ϕ = uxj Φ′(u2
xj ) Ψ(u2

xk
)χη2, for some

1 ≤ j, k ≤ N . The corresponding parabolic term becomes:¨
I×Ω

(uxj )t ϕdt dx =
1

2

¨
I×Ω

(
Φ(u2

xj )
)
t
Ψ(u2

xk
)χη2 dt dx.

In contrast to the previous situation, we cannot perform an integration by parts to get rid of the time
derivative on Φ(u2

xj ), since it would affect the factor Ψ(u2
xk

). In order to overcome this difficulty, which
does not arise in the elliptic setting, we need a new approach, aimed at “symmetrizing” the above quantity
containing uxj and uxk .

Basically, we merge together two weird Caccioppoli inequalities, where the spatial variables xj and xk
play symmetric roles. More specifically, we insert into (1.5) the test functions:

ϕ = uxj Φ′(u2
xj ) Ψ(u2

xk
)χη2, ϕ̃ = uxk Ψ′(u2

xk
) Φ(u2

xj )χη
2,

and then add the two resulting inequalities. The parabolic term is now replaced by the following quantity:

1

2

¨
I×Ω

(
Φ(u2

xj ) Ψ(u2
xk

)
)
t
χη2 dt dx.

This allows to integrate by parts and transfer the time derivative on the test function. It turns out that by
a suitable adaptation of the arguments that we used in the elliptic case, one can incorporate this new term
in the iterative Moser scheme. This finally leads to the desired local L∞ estimate on ∇u.

1.4. Plan of the paper. The paper is organized as follows: after collecting the basic terminology and some
preliminaries on Steklov averages in Section 2, we present in Section 3 the proofs of the new Caccioppoli
inequalities in the parabolic setting. We detail the iterative Moser scheme in Section 4 and finally establish
the Main Theorem in Section 5, by transferring to the original solution u the a priori estimates obtained on
the approximating solutions uε.

Acknowledgments. We thank Alkis S. Tersenov for pointing out the reference [24]. The paper has been
partially written during a visit of P. B. & L. B. to Napoli and of C. L. to Ferrara. Both visits have been funded
by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) through
the project “Regolarità per operatori degeneri con crescite generali ”. Hosting institutions are gratefully
acknowledged.

C. L. and A. V. are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro
Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

2. Preliminaries

2.1. Local solutions. Let Ω ⊂ RN be an open bounded set and I ⊂ R an open bounded interval. Fix p > 2
and take A : RN → RN a continuous function such that

〈A(z)−A(w), z − w〉 ≥ 0, for every z, w ∈ RN ,

and

〈A(z), z〉 ≥ 1

C
|z|p, and |A(z)| ≤ C |z|p−1, for every z ∈ RN .

We say that u ∈ Lploc(I;W 1,p
loc (Ω)) is a local weak solution of the quasilinear diffusion equation

(2.1) ut = divA(∇u), in I × Ω,
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if for every ϕ ∈ C∞0 (I × Ω), we have

−
¨
I×Ω

uϕt dt dx+

¨
I×Ω

〈A(∇u),∇ϕ〉 dt dx = 0.

2.2. Steklov averages. Throughout the paper, we denote by T0 < T1 the endpoints of the time interval I.
Let v ∈ L1

loc(I × Ω). For every 0 < σ < T1 − T0, we define its so-called

• forward Steklov average

v+
σ (t, x) =

 t+σ

t

v(τ, x) dτ, for every (t, x) ∈ (T0, T1 − σ)× Ω;

• backward Steklov average

v−σ (t, x) =

 t

t−σ
v(τ, x) dτ, for every (t, x) ∈ (T0 + σ, T1)× Ω.

We shall use some standard properties of the Steklov averages. Let 0 < σ < T1 − T0 and ψ ∈ L∞(I × Ω)
such that ψ is compactly supported in (T0, T1 − σ) × Ω. We extend ψ by 0 on (R \ I) × Ω, so that ψ−σ is
well-defined on I × Ω and compactly supported therein. By the Fubini theorem, we have

(2.2)

¨
(T0,T1−σ)×Ω

v+
σ ψ dt dx =

¨
I×Ω

v ψ−σ dt dx.

Moreover, if v ∈ Lqloc(I ×Ω) for some 1 ≤ q <∞, then v+
σ converges to v in Lqloc(I ×Ω), as σ goes to 0, see

e.g. [12, Chapter I, Lemma 3.2].
Finally, we can derive from (2.2) the following regularity properties of the Steklov averages:

Lemma 2.1. Let v ∈ L1
loc(I × Ω). Then for every 0 < σ < T1 − T0,

(1) the map v+
σ belongs to W 1,1

loc ((T0, T1 − σ);L1
loc(Ω)) and

(2.3) (v+
σ )t(t, x) =

v(t+ σ, x)− v(t, x)

σ
, for a.e. (t, x) ∈ (T0, T1 − σ)× Ω;

(2) if one further assumes that v ∈ L1
loc(I;W 1,1

loc (Ω)), then ∇(v+
σ ) ∈ L1

loc((T0, T1 − σ)× Ω) and

(2.4) ∇(v+
σ ) = (∇v)+

σ .

Proof. Fix 0 < σ < T1 − T0. Let ψ ∈ C∞0 ((T0, T1 − σ)× Ω). Then by (2.2),¨
(T0,T1−σ)×Ω

v+
σ ψt dt dx =

¨
I×Ω

v (ψt)
−
σ dt dx =

¨
I×Ω

v(t, x)
ψ(t, x)− ψ(t− σ, x)

σ
dt dx.

By an obvious change of variables, this yields¨
(T0,T1−σ)×Ω

v+
σ ψt dt dx = −

¨
(T0,T1−σ)×Ω

v(t+ σ, x)− v(t, x)

σ
ψ(t, x) dt dx,

which gives the desired identity (2.3).
In order to prove (2.4), we rely again on (2.2), this time tested with ψxj in place of ψ, for some 1 ≤ j ≤ N :¨

(T0,T1−σ)×Ω

v+
σ ψxj dt dx =

¨
I×Ω

v (ψxj )
−
σ dt dx =

¨
I×Ω

v (ψ−σ )xj dt dx.

In the last equality, we have derived under the integral sign the smooth function ψ. Hence, by integrating
by parts the last integral and using (2.2) again, one gets¨

I×Ω

v+
σ ψxj dt dx = −

¨
(T0,T1−σ)×Ω

(vxj )
+
σ ψ dt dx,

from which (2.4) follows. �
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3. Energy estimates for a regularized equation

3.1. An approximating equation. We denote by

G(ξ) =
1

p

(
1 + |ξ|2

) p
2 , for every ξ ∈ RN ,

and for every ε ∈ (0, 1), we consider the convex function

(3.1) Fε(ξ) =
1

p

N∑
i=1

|ξi|p + ε G(ξ), for every ξ ∈ RN .

We consider a local weak solution uε ∈ Lploc(I;W 1,p
loc (Ω)) of the equation (2.1) with the choice

A(z) = ∇Fε(z).
This means that uε verifies

(3.2) −
¨
I×Ω

uε ϕt dt dx+

¨
I×Ω

〈∇Fε(∇uε),∇ϕ〉 dt dx = 0,

for every ϕ ∈ C∞0 (I × Ω). Observe that the map Fε belongs to C2(RN ) and satisfies

ε (1 + |ξ|2)
p−2
2 |ζ|2 ≤ 〈D2Fε(ξ) ζ, ζ〉 ≤ (1 + ε) (p− 1) (1 + |ξ|2)

p−2
2 |ζ|2, for every ξ, ζ ∈ RN .

Hence, one can rely on the classical regularity theory for quasilinear parabolic equations, see e.g. [12,
Theorem 5.1, Chapter VIII] and [1, Lemma 3.1], to get:

(3.3) ∇uε ∈ L∞loc(I × Ω) and uε ∈ L2
loc(I;W 2,2

loc (Ω)).

In the following computations, we delete the index ε both for u and F .

3.2. An equation for the spatial gradient. In order to establish a Lipschitz bound on our solution u,
we need to differentiate (3.2) with respect to the spatial variables xj , 1 ≤ j ≤ N .

Fix 0 < σ < T1 − T0. Let ψ ∈ C∞0 ((T0, T1 − σ)×Ω). As already observed, the backward Steklov average

ϕ(t, x) = ψ−σ (t, x), for (t, x) ∈ I × Ω,

is compactly supported in I × Ω. We can thus insert it in (3.2):

−
¨
I×Ω

u (ψ−σ )t dt dx+

¨
I×Ω

〈∇F (∇u),∇ψ−σ 〉 dt dx = 0.

Since (ψ−σ )t = (ψt)
−
σ , (2.2) implies that

−
¨
I×Ω

u (ψ−σ )t dt dx = −
¨

(T0,T1−σ)×Ω

u+
σ ψt dt dx =

¨
(T0,T1−σ)×Ω

(u+
σ )t ψ dt dx.

One thus gets

(3.4)

¨
(T0,T1−σ)×Ω

(u+
σ )t ψ dt dx+

¨
I×Ω

〈∇F (∇u),∇ψ−σ 〉 dt dx = 0,

for every ψ ∈ C∞0 ((T0, T1 − σ)× Ω).

Let j ∈ {1, . . . , N} and ϕ ∈ C∞0 ((T0, T1 − σ)× Ω). The map

(u+
σ )t(t, x) =

u(t+ σ, x)− u(t, x)

σ
,

belongs to Lploc((T0, T1− σ);W 1,p
loc (Ω)) and ((u+

σ )t)xj = ((uxj )
+
σ )t. By derivation under the integral sign, one

also has

∇((ϕxj )
−
σ ) = (∇(ϕ−σ ))xj .
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We insert ψ = ϕxj in equation (3.4). An integration by parts in the spatial variable leads to¨
(T0,T1−σ)×Ω

(
(uxj )

+
σ

)
t
ϕdt dx+

¨
I×Ω

〈(∇F (∇u))xj ,∇ϕ−σ 〉 dt dx = 0.

Finally, using (2.2) in the second term, one gets

(3.5)

¨
(T0,T1−σ)×Ω

(
(uxj )

+
σ

)
t
ϕdt dx+

¨
(T0,T1−σ)×Ω

〈
(
(∇F (∇u))xj

)+
σ
,∇ϕ〉 dt dx = 0.

We observe that, since F ∈ C2(RN ) and ∇u ∈ L∞loc(I × Ω) ∩ L2
loc(I;W 1,2

loc (Ω)), one has

∇F (∇u) ∈ L2
loc((0, T );W 1,2

loc (Ω)).

We can thus appeal to a density argument to get that (3.5) remains true for every ϕ ∈ L2(I;W 1,2(Ω)), with
compact support in (T0, T1 − σ)× Ω.

3.3. Caccioppoli-type inequalities. As explained in the introduction, the first technical tool in the proof
of the Lipschitz bound of u is the following Caccioppoli inequality which provides a W 1,2 estimate on h(uxj ),
where h is any smooth convex function.

Lemma 3.1 (Standard Caccioppoli inequality). Let η ∈ C∞0 (Ω) and χ ∈ C∞0 ((T0, T1]) be two non-negative
functions, with χ non-decreasing. Let h : R → R be a C1 convex non-negative function. Then, for almost
every τ ∈ I and every j = 1, ..., N , we have

χ(τ)

ˆ
{τ}×Ω

h2(uxj ) η
2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇h(uxj ),∇h(uxj )〉χη2 dt dx

≤
¨

(T0,τ)×Ω

χ′ η2 h2(uxj ) dt dx

+ 4

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉h2(uxj )χdt dx.

(3.6)

Proof. We first assume that h is a C2 convex non-negative function. Let ζ ∈ C∞0 (I) and η ∈ C∞0 (Ω). There
exists 0 < σ1 < (T1 − T0)/2 such that ζ is compactly supported in (T0 + σ1, T1 − σ1). Given 0 < σ < σ1,

Lemma 2.1 and (3.3) imply that (uxj )
+
σ ∈ W

1,1
loc ((T0, T1 − σ);L1

loc(Ω)) ∩ L∞loc((T0, T1 − σ) × Ω). Hence, the

map h2((uxj )
+
σ ) belongs to W 1,1

loc ((T0, T1 − σ);L1
loc(Ω)) and we have

(3.7)
1

2

(
h2
((
uxj
)+
σ

))
t

= (hh′)
((
uxj
)+
σ

) (
(uxj )

+
σ

)
t
.

We insert in (3.5) the test function

ϕ = (hh′)
((
uxj
)+
σ

)
ζ η2,

which has compact support in (T0 + σ1, T1 − σ1)×Ω and belongs to L∞((T0 + σ1, T1 − σ1)×Ω)∩L2((T0 +
σ1, T1 − σ1);W 1,2(Ω)). By (3.7), (

(uxj )
+
σ

)
t
ϕ =

1

2

(
h2
((
uxj
)+
σ

))
t
ζ η2.

We use the above identity to infer:

1

2

¨
(T0+σ1,T1−σ1)×Ω

(
h2
((
uxj
)+
σ

))
t
ζ η2 dt dx+

¨
(T0+σ1,T1−σ1)×Ω

〈
(
(∇F (∇u))xj

)+
σ
,∇ϕ〉 dt dx = 0.

We then perform an integration by parts with respect to the time variable in the first term:

−1

2

¨
(T0+σ1,T1−σ1)×Ω

h2
((
uxj
)+
σ

)
ζ ′η2 dt dx+

¨
(T0+σ1,T1−σ1)×Ω

〈
(
(∇F (∇u))xj

)+
σ
,∇ϕ〉 dt dx = 0.
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We now want to take the limit as σ goes to 0. Let Ω1 b Ω such that η is compactly supported in Ω1. Since
uxj ∈ L2

loc(I × Ω), we have

lim
σ→0+

‖
(
uxj
)+
σ
− uxj‖L2((T0+σ1,T1−σ1)×Ω1) = 0.

Moreover, we know that uxj ∈ L∞loc(I × Ω) which guarantees that there exists C1 > 0 such that for every
σ ∈ (0, σ1), ∣∣∣(uxj)+σ ∣∣∣ ≤ C1, a. e. on (T0 + σ1, T1 − σ1)× Ω1.

It then follows from the Dominated Convergence Theorem that

(3.8) lim
σ→0+

−1

2

¨
(T0+σ1,T1−σ1)×Ω

h2
((
uxj
)+
σ

)
ζ ′η2 dt dx = −1

2

¨
I×Ω

h2
(
uxj
)
ζ ′η2 dt dx.

Next, by recalling the choice of ϕ above, we have

∇ϕ = (hh′)′
(
(uxj )

+
σ

)
∇
(
(uxj )

+
σ

)
ζ η2 + (hh′)

(
(uxj )

+
σ

)
ζ∇(η2).

By Lemma 2.1, we know that ∇
(
(uxj )

+
σ

)
= (∇uxj )+

σ . This implies that ∇
(
(uxj )

+
σ

)
converges to ∇uxj in

L2((T0 + σ1, T1 − σ1)× Ω). Hence, a similar argument to the one leading to (3.8) implies that

lim
σ→0+

∥∥∥∇ϕ−∇ ((hh′)(uxj ) ζ η2
) ∥∥∥

L2((T0+σ1,T1−σ1)×Ω)
= 0.

Finally, by using that (∇F (∇u))xj ∈ L2
loc(I × Ω), we can infer that

lim
σ→0+

∥∥∥ ((∇F (∇u))xj
)+
σ
− (∇F (∇u))xj

∥∥∥
L2((T0+σ1,T1−σ1)×Ω1)

= 0.

It follows that

lim
σ→0+

¨
(T0+σ1,T1−σ1)×Ω

〈
(
(∇F (∇u))xj

)+
σ
,∇ϕ〉 dt dx =

¨
I×Ω

〈(∇F (∇u))xj ,∇
(
(hh′)(uxj ) ζ η

2
)
〉 dt dx.

Up to now, we have thus proved:

(3.9) − 1

2

¨
I×Ω

h2
(
uxj
)
ζ ′ η2 dt dx+

¨
I×Ω

〈(∇F (∇u))xj ,∇
(
(hh′)(uxj ) ζ η

2
)
〉 dt dx = 0.

We now choose ζ as follows. Let χ ∈ C∞0 ((T0, T1]) be as in the statement. Given τ ∈ I and δ > 0 such that
T0 < τ < τ + δ < T1, we define

χ̃δ(t) :=


1, if t ≤ τ,
1− t− τ

δ
, if τ < t < τ + δ,

0, if t ≥ τ + δ.

We then insert

(3.10) ζ(t) = χ̃δ(t)χ(t),

in (3.9). Then, for almost every τ ∈ I, we can let δ go to 0 and obtain

χ(τ)

2

ˆ
{τ}×Ω

h2(uxj ) η
2 dx+

¨
(T0,τ)×Ω

〈(∇F (∇u))xj ,∇
(
(hh′)(uxj )χη

2
)
〉 dt dx

=
1

2

¨
(T0,τ)×Ω

χ′ η2 h2(uxj ) dt dx.

(3.11)

Since χ does not depend on the spatial variable, we have

〈(∇F (∇u))xj ,∇
(
(hh′)(uxj )χη

2
)
〉 = 〈D2F (∇u)∇h(uxj ),∇h(uxj )〉χη2

+ 〈D2F (∇u)∇uxj ,∇uxj 〉h′′(uxj )h(uxj )χη
2

+ 2 〈D2F (∇u)∇uxj ,∇η〉 (hh′)(uxj )χη.
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Since the second term is non-negative, by dropping it, we get from (3.11)

χ(τ)

2

ˆ
{τ}×Ω

h2(uxj ) η
2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇h(uxj ),∇h(uxj )〉χη2 dt dx

≤ 1

2

¨
(T0,τ)×Ω

χ′ η2 h2(uxj ) dt dx

− 2

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇η〉 (hh′)(uxj )χη dt dx.

In order to estimate the last term, we use the Cauchy-Schwarz inequality:∣∣∣〈D2F (∇u)∇uxj ,∇η〉
∣∣∣ ≤ (〈D2F (∇u)∇uxj ,∇uxj 〉

) 1
2
(
〈D2F (∇u)∇η,∇η〉

) 1
2

.

A further application of Young inequality leads to∣∣∣∣∣− 2

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇η〉 (hh′)(uxj )χη dt dx

∣∣∣∣∣
≤ 1

2

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉h′(uxj )2 χη2 dt dx

+ 2

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉h2(uxj )χdt dx.

In this way, the integral containing ∇uxj can be absorbed on the left-hand side. Let us finally observe that

we can remove the C2 assumption on the function h, by a standard approximation argument. �

We next establish the key tool for the proof of our main result, namely a Caccioppoli type inequality,
where two different partial derivatives uxj and uxk come into play.

Lemma 3.2 (Weird Caccioppoli inequality). Let η ∈ C∞0 (Ω) and χ ∈ C∞0 ((T0, T1]) be two non-negative
functions, with χ non-decreasing. Let Φ : R+ → R and Ψ : R+ → R be two C1 non-decreasing and non-
negative convex functions. Then, for almost every τ ∈ I, every k, j = 1, ..., N and every θ ∈ [0, 1], we
have

χ(τ)

ˆ
{τ}×Ω

Φ(u2
xj ) Ψ(u2

xk
) η2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉Φ′(u2
xj ) Ψ(u2

xk
)χη2 dt dx

≤
¨

(T0,τ)×Ω

χ′ η2 Φ(u2
xj ) Ψ(u2

xk
) dt dx

+ 4

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉
(
u2
xj Φ′(u2

xj ) Ψ(u2
xk

) + u2
xk

Ψ′(u2
xk

) Φ(u2
xj )
)
χdt dx

+ 8

(¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉u2
xj

(
Φ′(u2

xj )
)2 (

Ψ′(u2
xk

)
)θ
χη2 dt dx

) 1
2

×

(
1

4

¨
(T0,τ)×Ω

χ′ η2 |uxk |2θ
(
Ψ(u2

xk
)
)2−θ

dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉 |uxk |2θ
(
Ψ(u2

xk
)
)2−θ

χdt dx

) 1
2

.

Proof. It is convenient to divide the proof into two steps.

Step 1: an identity involving uxj and uxk . We first assume that Φ and Ψ are two C2 non-decreasing
and non-negative convex functions. We fix k, j ∈ {1, . . . , N}. Given 0 < σ1 < (T1 − T0)/2 and ζ ∈
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C∞0 (T0 + σ1, T1 − σ1), we consider (3.5) with the index j and for every 0 < σ < σ1, we insert the test
function

ϕ =
(
u+
σ

)
xj

Φ′
(((

u+
σ

)
xj

)2
)

Ψ

(((
u+
σ

)
xk

)2
)
ζ η2.

Symmetrically, we consider (3.5) with the index k and insert the test function

ϕ̃ =
(
u+
σ

)
xk

Ψ′
(((

u+
σ

)
xk

)2
)

Φ

(((
u+
σ

)
xj

)2
)
ζ η2.

The functions ϕ and ϕ̃ are compactly supported in (T0 + σ1, T1 − σ1)×Ω and belong to L∞((T0 + σ1, T1 −
σ1)× Ω) ∩ L2((T0 + σ1, T1 − σ1);W 1,2(Ω)). Thus they are admissible test functions. We observe that(

(u+
σ )xj

)
t
ϕ =

1

2

(
Φ

(((
u+
σ

)
xj

)2
))

t

Ψ

(((
u+
σ

)
xk

)2
)
ζ η2,

and similarly (
(u+
σ )xk

)
t
ϕ̃ =

1

2

(
Ψ

(((
u+
σ

)
xk

)2
))

t

Φ

(((
u+
σ

)
xj

)2
)
ζ η2.

Thus we obtain

(3.12)
(
(u+
σ )xj

)
t
ϕ+

(
(u+
σ )xk

)
t
ϕ̃ =

1

2

[
Φ

(((
u+
σ

)
xj

)2
)

Ψ

(((
u+
σ

)
xk

)2
)]

t

ζ η2.

By summing the two equations obtained from (3.5) as described above, and using the identity (3.12), we get

1

2

¨
(T0+σ1,T1−σ1)×Ω

[
Φ

(((
u+
σ

)
xj

)2
)

Ψ

(((
u+
σ

)
xk

)2
)]

t

ζ η2 dt dx

+

¨
(T0+σ1,T1−σ1)×Ω

〈
(
(∇F (∇u))xj

)+
σ
,∇ϕ〉 dt dx

+

¨
(T0+σ1,T1−σ1)×Ω

〈((∇F (∇u))xk)
+
σ ,∇ϕ̃〉 dt dx = 0.

We then perform an integration by parts in the time variable in the first integral, which gives

− 1

2

¨
(T0+σ1,T1−σ1)×Ω

Φ

(((
u+
σ

)
xj

)2
)

Ψ

(((
u+
σ

)
xk

)2
)
ζ ′η2 dt dx

+

¨
(T0+σ1,T1−σ1)×Ω

〈
(
(∇F (∇u))xj

)+
σ
,∇ϕ〉 dt dx+

¨
(T0+σ1,T1−σ1)×Ω

〈((∇F (∇u))xk)
+
σ ,∇ϕ̃〉 dt dx = 0.

Finally, we let σ go to 0. In the same vein as in the proof of (3.9), the Dominated Convergence Theorem
implies that

−1

2

¨
I×Ω

Φ
((
uxj
)2)

Ψ
(

(uxk)
2
)
ζ ′η2 dt dx

+

¨
I×Ω

〈(∇F (∇u))xj ,∇ϕ0〉 dt dx+

¨
I×Ω

〈(∇F (∇u))xk ,∇ϕ̃0〉 dt dx = 0,

(3.13)

where

ϕ0 = uxjΦ
′
(
u2
xj

)
Ψ
(
u2
xk

)
ζη2,

and

ϕ̃0 = uxkΨ′
(
u2
xk

)
Φ
(
u2
xj

)
ζη2.
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We now choose ζ as in (3.10) and insert it in (3.13). By letting δ go to 0, we obtain for almost every τ ∈ I

χ(τ)

2

ˆ
{τ}×Ω

Φ
(
u2
xj

)
Ψ
(
u2
xk

)
η2 dx

+

¨
(T0,τ)×Ω

〈(∇F (∇u))xj ,∇ψ0〉 dt dx+

¨
(T0,τ)×Ω

〈(∇F (∇u))xk ,∇ψ̃0〉 dt dx

=
1

2

¨
(T0,τ)×Ω

χ′η2Φ(u2
xj )Ψ(u2

xk
) dt dx,

(3.14)

where ψ0 and ψ̃0 are defined as ϕ0 and ϕ̃0, except that ζ is now replaced by χ.

Step 2: completion of the proof. We first observe that

〈(∇F (∇u))xj ,∇ψ0〉 = 〈D2F (∇u)∇uxj ,∇ψ0〉, 〈(∇F (∇u))xk ,∇ψ̃0〉 = 〈D2F (∇u)∇uxk ,∇ψ̃0〉.

Taking into account the definition of ψ0 and ψ̃0, we thus get from (3.14)

χ(τ)

2

ˆ
{τ}×Ω

Φ
(
u2
xj

)
Ψ
(
u2
xk

)
η2 dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉
(

Φ′(u2
xj ) + 2u2

xjΦ
′′(u2

xj )
)

Ψ(u2
xk

)χη2 dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxk ,∇uxk〉
(
Ψ′(u2

xk
) + 2u2

xk
Ψ′′(u2

xk
)
)

Φ(u2
xj )χη

2 dt dx

=
1

2

¨
(T0,τ)×Ω

χ′ η2 Φ(u2
xj ) Ψ(u2

xk
) dt dx

− 4

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxk〉uxj Φ′(u2
xj )uxk Ψ′(u2

xk
)χη2 dt dx

− 2

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇η〉uxj Φ′(u2
xj ) Ψ(u2

xk
)χη dt dx

− 2

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxk ,∇η〉uxk Φ(u2
xj ) Ψ′(u2

xk
)χη dt dx.

(3.15)

We first estimate the two last terms. We use the Cauchy-Schwarz inequality:

|〈D2F (∇u)∇uxj ,∇η〉| ≤
(
〈D2F (∇u)∇uxj ,∇uxj 〉

) 1
2
(
〈D2F (∇u)∇η,∇η〉

) 1
2

.

By the Young inequality, this implies∣∣∣∣∣− 2

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇η〉uxj Φ′(u2
xj ) Ψ(u2

xk
)χη dt dx

∣∣∣∣∣
≤ 1

2

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉Φ′(u2
xj ) Ψ(u2

xk
)χη2 dt dx

+2

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉u2
xj Φ′(u2

xj ) Ψ(u2
xk

)χdt dx.
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A similar inequality holds true for the last term in (3.15). Hence,

χ(τ)

2

ˆ
{τ}×Ω

Φ
(
u2
xj

)
Ψ
(
u2
xk

)
η2 dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉
(

1

2
Φ′(u2

xj ) + 2u2
xj Φ′′(u2

xj )

)
Ψ(u2

xk
)χη2 dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxk ,∇uxk〉
(

1

2
Ψ′(u2

xk
) + 2u2

xk
Ψ′′(u2

xk
)

)
Φ(u2

xj )χη
2 dt dx

≤ 1

2

¨
(T0,τ)×Ω

χ′ η2 Φ(u2
xj ) Ψ(u2

xk
) dt dx

− 4

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxk〉uxj Φ′(u2
xj )uxkΨ′(u2

xk
)χη2 dt dx

+ 2

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉
(
u2
xj Φ′(u2

xj ) Ψ(u2
xk

) + u2
xk

Ψ′(u2
xk

) Φ(u2
xj )
)
χdt dx.

(3.16)

In the left-hand side of (3.16), in the second term, we drop 2u2
xj Φ′′(u2

xj ) which is non-negative. We also
drop the whole last term of the left-hand side for the same reason. This yields

χ(τ)

2

ˆ
{τ}×Ω

Φ(u2
xj ) Ψ(u2

xk
) η2 dx

+
1

2

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉Φ′(u2
xj ) Ψ(u2

xk
)χη2 dt dx

≤ 1

2

¨
(T0,τ)×Ω

χ′ η2 Φ(u2
xj ) Ψ(u2

xk
) dt dx

− 4

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxk〉uxj Φ′(u2
xj )uxk Ψ′(u2

xk
)χη2 dt dx

+ 2

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉
(
u2
xj Φ′(u2

xj ) Ψ(u2
xk

) + u2
xk

Ψ′(u2
xk

) Φ(u2
xj )
)
χdt dx.

(3.17)

We next estimate the second term of the right-hand side of (3.17), that we denote by

A :=

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxk〉uxj Φ′(u2
xj )uxk Ψ′(u2

xk
)χη2 dt dx.

We first use the Cauchy-Schwarz inequality to get

|〈D2F (∇u)∇uxj ,∇uxk〉| ≤
(
〈D2F (∇u)∇uxj ,∇uxj 〉

) 1
2
(
〈D2F (∇u)∇uxk ,∇uxk〉

) 1
2

.

We then introduce a parameter θ ∈ [0, 1]. By writing Ψ′(u2
xk

) =
(
Ψ′(u2

xk
)
) θ

2
(
Ψ′(u2

xk
)
)1− θ2 , one gets by the

Cauchy-Schwarz inequality again:

A ≤

(¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉u2
xj

(
Φ′(u2

xj )
)2 (

Ψ′(u2
xk

)
)θ
χη2 dt dx

) 1
2

×

(¨
(T0,τ)×Ω

〈D2F (∇u)∇uxk ,∇uxk〉
(
Ψ′(u2

xk
)
)2−θ

u2
xk
χη2 dt dx

) 1
2

.

(3.18)

We define

G(t) =

ˆ t2

0

Ψ′(s)1− θ2 ds.
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Then G is a C1 non-negative convex function. Moreover, by its definition

∇G(uxk) = 2uxk
(
Ψ′(u2

xk
)
)1− θ2 ∇uxk .

Hence, by the standard Caccioppoli inequality (3.6) with h = G and k in place of j, this yields:¨
(T0,τ)×Ω

〈D2F (∇u)∇uxk ,∇uxk〉
(
Ψ′(u2

xk
)
)2−θ

u2
xk
χη2 dt dx

=
1

4

¨
(T0,τ)×Ω

〈D2F (∇u)∇G(uxk),∇G(uxk)〉χη2 dt dx

≤ 1

4

¨
(T0,τ)×Ω

χ′ η2G2(uxk) dt dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉G2(uxk)χdt dx.

By using the Jensen inequality with the concave function y 7→ y1−θ/2, we obtain

0 ≤ G(uxk) ≤ |uxk |θ
(
Ψ(u2

xk
)
)1− θ2 .

This implies ¨
(T0,τ)×Ω

〈D2F (∇u)∇uxk ,∇uxk〉
(
Ψ′(u2

xk
)
)2−θ

u2
xk
χη2 dt dx

≤ 1

4

¨
(T0,τ)×Ω

χ′ η2 |uxk |2 θ
(
Ψ(u2

xk
)
)2−θ

dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉 |uxk |2θ
(
Ψ(u2

xk
)
)2−θ

χdt dx.

Coming back to (3.18), it follows that

A ≤

(¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉u2
xj

(
Φ′(u2

xj )
)2 (

Ψ′(u2
xk

)
)θ
χη2 dt dx

) 1
2

×

(
1

4

¨
(T0,τ)×Ω

χ′ η2 |uxk |2θ
(
Ψ(u2

xk
)
)2−θ

dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉 |uxk |2θ
(
Ψ(u2

xk
)
)2−θ

χdt dx

) 1
2

.

Together with (3.17), this yields the desired inequality. Finally, the C2 assumption on Φ and Ψ can be
removed by a standard approximation argument. �

4. Uniform Lipschitz estimate for the regularized equation

This section is devoted to the proof of the following uniform estimate. For simplicity, we will work with
anisotropic parabolic cubes of the form

QR(t0, x0) = (t0 −Rp, t0)× (x0 −R, x0 +R)N .

As in the previous section, we drop the index ε and simply write u and F , in place of uε and Fε.

Proposition 4.1. There exist α = α(N) > 2 and C = C(N, p) > 0 such that for every ε > 0 and for every
Qr(x0, t0) ⊂ QR(t0, x0) b I × Ω with R ≤ 1, one has

(4.1) ‖∇u‖L∞(Qr(x0,t0)) ≤
C

(R− r)αp

(¨
QR(t0,x0)

|∇u|p dt dx

) 1
2

+ 1

 .
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Proof. We will limit ourselves for simplicity to the case N ≥ 3. This allows to use the Sobolev inequality
valid for every f ∈W 1,2

0 (Ω)

‖f‖L2∗ (Ω) ≤ CN ‖∇f‖L2(Ω), with 2∗ =
2N

N − 2
.

Here CN is a constant which depends only on N . The case N = 2 follows with minor modifications and we
omit the details.

The proof is quite involved and for ease of readability, we divide it into several steps.

Step 1: the choices of Φ and Ψ. We apply Lemma 3.2 with the following choices

Φ(t) = ts and Ψ(t) = tm, for t ≥ 0,

with 1 ≤ s ≤ m. We also take

θ =


m− s
m− 1

∈ [0, 1] if m > 1,

1 if m = 1.

This gives

χ(τ)

ˆ
{τ}×Ω

|uxj |2s |uxk |2m η2 dx

+ s

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |2s−2 |uxk |2mχη2 dt dx

≤
¨

(T0,τ)×Ω

χ′ η2 |uxj |2s |uxk |2m dt dx

+ 4

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉
(
s |uxj |2s |uxk |2m +m |uxk |2m |uxj |2s

)
χdt dx

+ 8 sm
θ
2

(¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉|uxj |4s−2|uxk |2m−2sχη2 dt dx

) 1
2

×

(
1

4

¨
(T0,τ)×Ω

χ′η2|uxk |2(s+m) dt dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉|uxk |2(s+m)χdt dx

) 1
2

.

On the product of the two last integrals, we use the Young inequality in the form

a b ≤ a2 +
b2

4
.

This gives

χ(τ)

ˆ
{τ}×Ω

|uxj |2s |uxk |2m η2 dx+ s

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |2s−2 |uxk |2m χη2 dt dx

≤
¨

(T0,τ)×Ω

χ′ η2|uxj |2s |uxk |2m dt dx+ 4 (s+m)

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉 |uxj |2s |uxk |2m χdt dx

+ 16 s2mθ

(
1

4

¨
(T0,τ)×Ω

χ′ η2 |uxk |2(s+m) dt dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉 |uxk |2(s+m) χdt dx

)

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |4s−2 |uxk |2m−2s χη2 dt dx.

By the Young inequality again, we can estimate

|uxj |2s |uxk |2m ≤ |uxj |2m+2s + |uxk |2m+2s.
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Using that s ≥ 1 in the left-hand side and mθ ≤ m in the right-hand side, we thus obtain

χ(τ)

ˆ
{τ}×Ω

|uxj |2s |uxk |2m η2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |2s−2 |uxk |2m χη2 dt dx

≤
¨

(T0,τ)×Ω

χ′ η2 (|uxj |2(s+m) + |uxk |2(s+m)) dt dx

+ 4 (s+m)

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉
(
|uxj |2(s+m) + |uxk |2(s+m)

)
χdt dx

+ 16 s2m

(
1

4

¨
(T0,τ)×Ω

χ′ η2 |uxk |2(s+m) dt dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉|uxk |2(s+m) χdt dx

)

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉|uxj |4s−2 |uxk |2m−2s χη2 dt dx.

This finally implies

χ(τ)

ˆ
{τ}×Ω

|uxj |2s |uxk |2m η2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |2s−2 |uxk |2m χη2 dt dx

≤ 16 (s+m+ s2m)

¨
(T0,τ)×Ω

(
χ′ η2 + χ 〈D2F (∇u)∇η,∇η〉

) (
|uxj |2(s+m) + |uxk |2(s+m)

)
dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |4s−2|uxk |2m−2s χη2 dt dx.

(4.2)

Step 2: the staircase. Let `0 ∈ N \ {0} and set q = 2`0 − 1. We define the two families of indices

s` = 2` and m` = q + 1− 2`, for ` ∈ {0, . . . , `0}.
We observe that by construction, for every 0 ≤ ` ≤ `0 − 1,

s` +m` = q + 1, 4s` − 2 = 2s`+1 − 2 and 2m` − 2s` = 2m`+1.

We also use that s`+m`+s2
` m` ≤ 2 (q+1)3. Then the above inequality (4.2) written for s = s` and m = m`

with 0 ≤ ` ≤ `0 − 1 gives

χ(τ)

ˆ
{τ}×Ω

|uxj |2s` |uxk |2m` η2 dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |2s`−2 |uxk |2m` χη2 dt dx

≤ 32 (q + 1)3

¨
(T0,τ)×Ω

(
χ′ η2 + χ 〈D2F (∇u)∇η,∇η〉

) (
|uxj |2(q+1) + |uxk |2(q+1)

)
dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |2s`+1−2 |uxk |2m`+1 χη2 dt dx.

Observe that we used that 2 s`+ 2m` = 2 (q+ 1) on the first term on the right-hand side. By summing from
` = 0 up to ` = `0 − 1 and erasing the common terms on both sides, one gets

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

|uxj |2s` |uxk |2m` η2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxk |2q χη2 dt dx

≤ C q3 `0

¨
(T0,τ)×Ω

(
χ′η2 + χ 〈D2F (∇u)∇η,∇η〉

) (
|uxj |2(q+1) + |uxk |2(q+1)

)
dt dx

+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxj |2q χη2 dt dx.
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For the last term, we apply Lemma 3.1 with the choice

h(t) =
|t|q+1

q + 1
, t ∈ R.

We thus get

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

|uxj |2s` |uxk |2m` η2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉 |uxk |2q χη2 dt dx

≤ C q4

¨
(T0,τ)×Ω

(
χ′ η2 + χ 〈D2F (∇u)∇η,∇η〉

) (
|uxj |2 (q+1) + |uxk |2 (q+1)

)
dt dx

+
1

(q + 1)2

¨
(T0,τ)×Ω

χ′ η2 |uxj |2(q+1) dt dx

+
4

(q + 1)2

¨
(T0,τ)×Ω

〈D2F (∇u)∇η,∇η〉 |uxj |2(q+1) χdt dx.

This is turn implies that

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

|uxj |2s` |uxk |2m`η2 dx+

¨
(T0,τ)×Ω

〈D2F (∇u)∇uxj ,∇uxj 〉|uxk |2qχη2 dt dx

≤ C q4

¨
(T0,τ)×Ω

(
χ′η2 + χ 〈D2F (∇u)∇η,∇η〉

) (
|uxj |2(q+1) + |uxk |2(q+1)

)
dt dx,

(4.3)

possibly for a different constant C > 0.

Step 3: weak ellipticity and boundedness of D2F . We now use the explicit expression of F . We recall
that

F (ξ) =
1

p

N∑
i=1

|ξi|p + εG(ξ), for every ξ ∈ RN ,

where

G(ξ) =
1

p

(
1 + |ξ|2

) p
2 , for every ξ ∈ RN .

If follows that for every ξ, λ ∈ RN , we have

(p− 1)

N∑
i=1

|ξi|p−2 λ2
i ≤ 〈D2F (ξ)λ, λ〉 ≤ C

(
|ξ|p−2 + 1

)
|λ|2.

By inserting these estimates into (4.3), one gets

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

|uxj |2s` |uxk |2m` η2 dx

+ (p− 1)

N∑
i=1

¨
(T0,τ)×Ω

|uxi |p−2 u2
xixj |uxk |

2q χη2 dt dx

≤ C q4

¨
(T0,τ)×Ω

(
χ′ η2 + χ

(
|∇u|p−2 + 1

)
|∇η|2

) (
|uxj |2(q+1) + |uxk |2(q+1)

)
dt dx.
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We consider the second term on the left-hand side: observe that by keeping in the sum only the term with
i = k and dropping the others, we get

N∑
i=1

¨
(T0,τ)×Ω

|uxi |p−2 u2
xixj |uxk |

2q χη2 dt dx ≥
¨

(T0,τ)×Ω

|uxk |p−2 u2
xkxj
|uxk |2q χη2 dt dx

=
1(

q +
p

2

)2

¨
(T0,τ)×Ω

∣∣∣∣(|uxk |q+ p−2
2 uxk

)
xj

∣∣∣∣2 χη2 dt dx.

When we sum over j = 1, . . . , N the resulting estimate, we thus get

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

N∑
j=1

|uxj |2s` |uxk |2m` η2 dx+
p− 1(
q +

p

2

)2

¨
(T0,τ)×Ω

∣∣∣∇(|uxk |q+ p−2
2 uxk

)∣∣∣2 χη2 dt dx

≤ Cq4

¨
(T0,τ)×Ω

(
χ′η2 + χ

(
|∇u|p−2 + 1

)
|∇η|2

) N∑
j=1

|uxj |2(q+1) +N |uxk |2(q+1)

 dt dx,

which in turn implies

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

N∑
j=1

|uxj |2s` |uxk |2m` η2 dx+

¨
(T0,τ)×Ω

∣∣∣∇(|uxk |q+ p−2
2 uxk

)∣∣∣2 χη2 dt dx

≤ Cq6

¨
(T0,τ)×Ω

(
χ′η2 + χ

(
|∇u|p−2 + 1

)
|∇η|2

)
|∇u|2(q+1) dt dx,

up to redefine the constant C > 0. We now add the term

¨
(T0,τ)×Ω

|uxk |2q+p χ |∇η|2 dt dx,

on both sides of the above inequality. With some algebraic manipulations, this gives

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

N∑
j=1

|uxj |2s` |uxk |2m` η2 dx+

¨
(T0,τ)×Ω

∣∣∣∇(|uxk |q+ p−2
2 uxk η

)∣∣∣2 χdt dx
≤ C q6

¨
(T0,τ)×Ω

(
χ′ η2 + χ

(
|∇u|p−2 + 1

)
|∇η|2

)
|∇u|2(q+1) dt dx+

¨
(T0,τ)×Ω

|uxk |2q+pχ|∇η|2 dt dx

≤ C q6

¨
(T0,τ)×Ω

(
χ′η2 + χ

(
|∇u|p−2 + 1

)
|∇η|2

)
|∇u|2(q+1) dt dx.

By using the Sobolev inequality in the spatial variable for the second term of the left-hand side, one obtains

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

N∑
j=1

|uxj |2s` |uxk |2m` η2 dx+

ˆ τ

T0

χ

(ˆ
Ω

(
|uxk |2q+pη2

) 2∗
2 dx

) 2
2∗

dt

≤ C q6

¨
(T0,τ)×Ω

(
χ′ η2 + χ

(
|∇u|p−2 + 1

)
|∇η|2

)
|∇u|2(q+1) dt dx.
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We now finally sum over k = 1, . . . , N and use the Minkowski inequality for the second term of the left-hand
side. This gives

χ(τ)

`0−1∑
`=0

ˆ
{τ}×Ω

N∑
j=1

|uxj |2s`
N∑
k=1

|uxk |2m` η2 dx+

ˆ τ

T0

χ

ˆ
Ω

(
N∑
k=1

|uxk |2q+pη2

) 2∗
2

dx


2
2∗

dt

≤ C q6

¨
(T0,τ)×Ω

(
χ′η2 + χ

(
|∇u|p−2 + 1

)
|∇η|2

)
|∇u|2(q+1) dt dx.

We introduce the expedient function

U = max
1≤k≤N

|uxk |.

We observe that for every s ≥ 0, one has

Us ≤
N∑
k=1

|uxk |s ≤ N Us.

In particular for s = 2, we get U ≤ |∇u| ≤
√
N U . Hence, we get

χ(τ)

ˆ
{τ}×Ω

U2(q+1) η2 dx+

ˆ τ

T0

χ

(ˆ
Ω

U (2q+p) 2∗
2 η2∗ dx

) 2
2∗

dt

≤ C q6

¨
(T0,τ)×Ω

(
χ′ η2 + χ

(
Up−2 + 1

)
|∇η|2

)
U2(q+1) dt dx

≤ C q6

¨
(T0,τ)×Ω

(
χ′ η2 + χ |∇η|2

) (
1 + U2q+p

)
dt dx.

(4.4)

Step 4: choice of the cut-off functions. Let (t0, x0) ∈ I × Ω and 0 < r < R ≤ 1 such that the cube
QR(x0) = (x0 −R, x0 +R)N is compactly contained in Ω. We further require that

(t0 −Rp, t0) b I,

so that we must have T0 < t0 < T1 and Rp < t0 − T0. Let χ : [T0, T1] → R be a non-decreasing Lipschitz
function such that

χ(t) = 0 on [T0, t0 −Rp], χ(t) = 1 on [t0 − rp, t0] and |χ′(t)| ≤ C

(R− r)p
.

Let η ∈ C∞0 (QR(x0)) be such that

0 ≤ η ≤ 1, η = 1 on Qr(x0) and |∇η| ≤ C

R− r
.

We recall the notation for the anisotropic parabolic cube

Qρ(t0, x0) = (t0 − ρp, t0)×Qρ(x0).

With such a choice of χ and η, we use (4.4) twice:

• firstly, by dropping the second term in the left-hand side, and taking the supremum in τ over the
interval (t0 − rp, t0);

• secondly, by dropping the first term in the left-hand side and taking τ = t0.
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By summing up the two resulting contributions, this gives

sup
τ∈(t0−rp,t0)

ˆ
{τ}×Qr(x0)

U2(q+1) dx+

ˆ t0

t0−rp

(ˆ
Qr(x0)

U (2q+p) 2∗
2 dx

) 2
2∗

dt

≤ C q6

(R− r)p

¨
QR(t0,x0)

(
1 + U2q+p

)
dt dx.(4.5)

Observe that we also used that (R − r)p ≤ (R − r)2, since R ≤ 1 and p > 2. By the Hölder inequality, one
has

¨
Qr(t0,x0)

U2q+p+
4(q+1)
N dt dx ≤

ˆ t0

t0−rp

(ˆ
Qr(x0)

U (2q+p) 2∗
2 dx

) 2
2∗
(ˆ

Qr(x0)

U2(q+1) dx

) 2
N

dt

≤

(
sup

τ∈(t0−rp,t0)

ˆ
{τ}×Qr(x0)

U2(q+1) dx

) 2
N ˆ t0

t0−rp

(ˆ
Qr(x0)

U (2q+p) 2∗
2 dx

) 2
2∗

dt.

Using (4.5), this implies

(4.6)

¨
Qr(t0,x0)

U2q+p+
4(q+1)
N dt dx ≤

(
C

q6

(R− r)p

¨
QR(t0,x0)

(
1 + U2q+p

)
dt dx

) 2
N +1

.

Step 5: the local L∞ estimate on ∇u. Take q = qj = 2j+1 − 1 with j ∈ N. We set

γj := 2 qj + p = 2j+2 − 2 + p, δj := 2 qj + p+
4

N
(qj + 1) = 2j+2 − 2 + p+

4

N
2j+1,

and

τj =
δj − γj
δj − γj−1

γj−1

γj
.

We observe that γj−1 < γj < δj and τj ∈ (0, 1) is defined in a such a way that

1

γj
=

τj
γj−1

+
1− τj
δj

.

The estimate (4.6) can be rewritten as

¨
Qr(t0,x0)

Uδj dt dx ≤

(
C

q6
j

(R− r)p

¨
QR(t0,x0)

(1 + Uγj ) dt dx

) 2
N +1

By interpolation in Lp spaces, we obtain

¨
Qr(t0,x0)

Uγj dt dx ≤

(¨
Qr(t0,x0)

Uγj−1 dt dx

)τj γj
γj−1

(¨
Qr(t0,x0)

Uδj dt dx

)(1−τj)
γj
δj

.

By lengthy but elementary computations, we see that

(1− τj)
γj
δj

=
N

N + 4
and τj

γj
γj−1

=
4

N + 4
,

thus the combination of the two previous inequalities leads to

¨
Qr(t0,x0)

Uγj dt dx ≤

(¨
Qr(t0,x0)

Uγj−1 dt dx

) 4
N+4

(
C

q6
j

(R− r)p

¨
QR(t0,x0)

(
1 + Uγj

)
dt dx

)N+2
N+4

.
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We now use the Young inequality(¨
QR(t0,x0)

Uγj−1 dt dx

) 4
N+4

(
C

q6
j

(R− r)p

¨
QR(t0,x0)

(
1 + Uγj

)
dt dx

)N+2
N+4

≤ N + 2

N + 4

¨
QR(t0,x0)

(
1 + Uγj

)
dt dx

+
2

N + 4

(
C

q6
j

(R− r)p

)N+2
2
(¨

QR(t0,x0)

Uγj−1 dt dx

)2

.

Thus we have proved the estimate¨
Qr(t0,x0)

Uγj dt dx ≤ N + 2

N + 4

¨
QR(t0,x0)

(
1 + Uγj

)
dt dx

+
2

N + 4

(
C

q6
j

(R− r)p

)N+2
2
(¨

QR(t0,x0)

Uγj−1 dt dx

)2

.

(4.7)

Next, we observe that

|Qr(t0, x0)|
|QR(t0, x0)|2

≤ C
( r
R

)N+p 1

RN+p
≤ C

(R− r)N+p
≤ C

(R− r)p N+2
2

,

where the last inequality relies on the two facts: R ≤ 1 and p > 2. Hence, using that qj ≥ 1, one gets

|Qr(t0, x0)| ≤ C

(
q6
j

(R− r)p

)N+2
2

|QR(t0, x0)|2

≤ C

(
q6
j

(R− r)p

)N+2
2
(¨

QR(t0,x0)

(
1 + Uγj−1

)
dt dx

)2

.

By summing |Qr(t0, x0)| on both sides of (4.7), this implies¨
Qr(t0,x0)

(
1 + Uγj

)
dt dx ≤ N + 2

N + 4

¨
QR(t0,x0)

(
1 + Uγj

)
dt dx

+ C

(
q6
j

(R− r)p

)N+2
2
(¨

QR(t0,x0)

(
1 + Uγj−1

)
dt dx

)2

.

We can now appeal to [17, Lemma 6.1] and absorb the term on the right-hand side containing 1 + Uγj , in a
standard way. By using the definition of qj , this leads to

(4.8)

¨
Qr(t0,x0)

(
1 + Uγj

)
dt dx ≤ C 23(N+2)j

(R− r)p N+2
2

(¨
QR(t0,x0)

(
1 + Uγj−1

)
dt dx

)2

.

We want to iterate the previous estimate on a sequence of shrinking parabolic cylinders. We fix two radii
0 < r < R ≤ 1, then we consider the sequence

Rj = r +
R− r
2j−1

, j ∈ N \ {0},

and we apply (4.8) with Rj+1 < Rj in place of r < R. We introduce the notation

Yj =

¨
QRj (t0,x0)

(1 + Uγj−1) dt dx.
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Thus we get

Yj+1 ≤ C 22 p (N+2) j (R− r)−
p
2 (N+2) Y 2

j .

By iterating the previous estimate starting from j = 1, we obtain for every n ∈ N \ {0},

Yn+1 ≤
(
C 22 p (N+2) (R− r)−

p
2 (N+2)

)n−1∑
j=0

(n−j) 2j

Y 2n

1 .

possibly for a different constant C > 1. We now take the power 2−n on both sides:

Y 2−n

n+1 ≤
(
C 22 p (N+2) (R− r)−

p
2 (N+2)

)n−1∑
j=0

(n−j) 2j−n

Y1 ≤ C (R− r)−p (N+2) Y1,

where the last inequality relies on the fact that

n−1∑
j=0

(n− j) 2j−n ≤
∞∑
j=1

j

2j
= 2.

We thus get

‖U‖L∞(Qr(t0,x0)) = lim
n→∞

(¨
QRn+1

(t0,x0)

Uγn dt dx

) 1
γn

≤ lim sup
n→+∞

(
Y 2−n

n+1

) 2n

γn

≤ lim sup
n→+∞

(
C (R− r)−p (N+2) Y1

) 2n

γn

≤ C (R− r)−p
N+2

4

(¨
QR(t0,x0)

(
1 + Up+2

)
dt dx

) 1
4

.

(4.9)

Here, we have also used that γ0 = p + 2 and γn ∼ 2n+2, for n going to ∞. Finally, in order to remove the
dependence on the Lp+2 norm of the gradient, we use a standard interpolation trick. We write(¨

QR(t0,x0)

(
1 + Up+2

)
dt dx

) 1
4

≤

(
‖U‖2L∞(QR(t0,x0))

¨
QR(t0,x0)

Up dt dx+ |QR(t0, x0)|

) 1
4

≤ ‖U‖
1
2

L∞(QR(t0,x0))

(¨
QR(t0,x0)

Up dt dx

) 1
4

+ C R
N+p

4 .

Inserting this estimate into (4.9), we get

‖U‖L∞(Qr(t0,x0)) ≤
C

(R− r)p N+2
4

‖U‖ 1
2

L∞(QR(t0,x0))

(¨
QR(t0,x0)

Up dt dx

) 1
4

+R
N+p

4


≤ 1

2
‖U‖L∞(QR(t0,x0)) +

C

(R− r)p N+2
2

(¨
QR(t0,x0)

Up dt dx

) 1
2

+
C R

N+p
4

(R− r)p N+2
2

≤ 1

2
‖U‖L∞(QR(t0,x0)) +

C

(R− r)p N+2
2

(¨
QR(t0,x0)

Up dt dx

) 1
2

+ 1

 ,
where in the last line, we have used that R ≤ 1. By [17, Lemma 6.1] again, we get

‖U‖L∞(Qr(t0,x0)) ≤
C

(R− r)p N+2
2

(¨
QR(t0,x0)

Up dt dx

) 1
2

+ 1

 .
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Since U ≤ |∇u| ≤
√
N U , this completes the proof. �

Remark 4.2. An inspection of the proof reveals that the exponent α in (4.1) can be taken to be

α =

{
N + 2

2
, if N ≥ 3,

any number > 2, if N = 2.

In the case N = 2, the constant C blows-up as α tends to 2.

5. Proof of the Main Theorem

We take u ∈ Lploc(I;W 1,p
loc (Ω)) to be a local weak solution of equation (1.1), i.e. it satisfies

−
¨
I×Ω

uϕt dt dx+

¨
I×Ω

〈∇F0(∇u),∇ϕ〉 dt dx = 0,(5.1)

for every ϕ ∈ C∞0 (I × Ω). We recall that F0 indicates the convex function

F0(ξ) =
1

p

N∑
i=1

|ξi|p, for every ξ ∈ RN .

Our program is as follows:

• we approximate u by solutions uε of the regularized equation;

• we transfer the Lipschitz estimate of Proposition 4.1 from uε to u;

• we use a scaling argument to “rectify” the local estimate and obtain (1.4).

We start by recalling that u has the following additional properties: for every subinterval J b I and every
open set O b Ω, we have

(5.2) ut ∈ Lp
′
(J ;W−1,p′(O)) and u ∈ C(J ;L2(O)).

Here W−1,p′(O) is the topological dual space of W 1,p
0 (O) and the latter is the completion of C∞0 (O) with

respect to the Lp norm of the gradient.
We briefly recall the argument to get (5.2), for completeness. Fix J and O as above, by using equation

(5.1) and the fact that ∇F0(∇u) ∈ Lp
′

loc(I × Ω), we get∣∣∣∣¨
J×O

uψt dt dx

∣∣∣∣ =

∣∣∣∣¨
J×O
〈∇F0(∇u),∇ψ〉 dt dx

∣∣∣∣
≤ C ‖∇ψ‖Lp(J×O) = ‖ψ‖Lp(J;W 1,p

0 (O)), for every ψ ∈ C∞0 (J ×O).

By density, we can extend the linear functional

Λ : ψ 7→
¨
J×O

uψt dt dx,

to the whole space Lp(J ;W 1,p
0 (O)). This implies that (see for example [23, Theorem 1.5, Chapter III])

Λ ∈
(
Lp(J ;W 1,p

0 (O))
)∗

= Lp
′
(J ;W−1,p′(O)).

By definition of Λ and of weak derivative, we get the first property in (5.2).
The second property in (5.2) follows by recalling that for every open set E ⊂ RN , we have (see [23,

Proposition 1.2, Chapter III])

Wp(J × E) :=
{
ϕ ∈ Lp(J ;W 1,p

0 (E)) : ϕt ∈ Lp
′
(J ;W−1,p′(E))

}
⊂ C(J ;L2(E)).
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Indeed, it is sufficient to take O b O′ b Ω and use the previous inclusion for the function θ u, where
θ ∈ C∞0 (O′) is such that θ ≡ 1 on O. Thanks to first property in (5.2) (used with O′ in place of O) and the
properties of θ, we have that

θ u ∈ Wp(J ×O′) ⊂ C(J ;L2(O′)).
Since θ ≡ 1 on O, the last fact entails that u ∈ C(J ;L2(O)), as claimed.

In light of (5.2) and since we are only interested in a local result, it is not restrictive to assume from the
beginning that

u ∈ Lp(I;W 1,p(Ω)) ∩ C(I;L2(Ω)) and ut ∈ Lp
′
(I;W−1,p′(Ω)).

Part 1: convergence of the approximation scheme. We remember the definition (3.1) of Fε for every
ε ≥ 0. We then consider the approximating initial boundary value problem parametrized by ε > 0 vt = div∇Fε(∇v), in I × Ω,

v = u, on I × ∂Ω,
v(T0, ·) = u(T0, ·), in Ω.

By [23, Propositon 4.1, Chapter III], there exists a unique weak solution uε ∈ Lp(I;W 1,p(Ω)) to this problem,
such that

(uε)t ∈ L
p′(I;W−1,p′(Ω)) and thus uε ∈ C(I;L2(Ω)).

The boundary value condition is taken in the sense that

uε − u ∈ Lp(I;W 1,p
0 (Ω)),

and the initial condition is taken in the L2 sense, which is feasible thanks to the continuity properties of
both uε and u. The function uε verifies

(5.3) −
¨
I×Ω

uε ϕt dt dx+

¨
I×Ω

〈∇Fε(∇uε),∇ϕ〉 dt dx = 0,

for every ϕ ∈ C∞0 (I × Ω). An integration by parts in (5.3) leads to

(5.4)

ˆ
I

((uε)t , ϕ)
(W−1,p′ ,W 1,p

0 )
dt+

¨
I×Ω

〈∇Fε(∇uε),∇ϕ〉 dt dx = 0.

By density, the above identity remains true for every ϕ ∈ Lp(I;W 1,p
0 (Ω)). Then the choice ϕ = uε−u yieldsˆ

I

((uε)t , uε − u)
(W−1,p′ ,W 1,p

0 )
dt+

¨
I×Ω

〈∇Fε(∇uε),∇uε −∇u〉 dt dx = 0.

By recalling the expression (3.1) of Fε, the previous integral identity can be rewritten asˆ
I

((uε)t , uε − u)
(W−1,p′ ,W 1,p

0 )
dt+

¨
I×Ω

〈∇F0(∇uε),∇uε −∇u〉 dt dx

+ ε

¨
I×Ω

〈∇G (∇uε) ,∇uε −∇u〉 dt dx = 0.

Starting from (5.1), we have similarlyˆ
I

(ut, uε − u)(W−1,p′ ,W 1,p
0 ) dt+

¨
I×Ω

〈∇F0 (∇u) ,∇uε −∇u〉 dt dx = 0.

Upon subtracting the two identities above, we get¨
I×Ω

((uε)t − ut, uε − u)
(W−1,p′ ,W 1,p

0 )
dt+

¨
I×Ω

〈∇F0 (∇uε)−∇F0 (∇u) ,∇uε −∇u〉 dt dx

+ ε

¨
I×Ω

〈∇G (∇uε) ,∇uε −∇u〉 dt dx = 0.

(5.5)
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For the first term, we rely onˆ
I

((uε)t − ut, uε − u)
(W−1,p′ ,W 1,p

0 )
dt =

1

2

ˆ
{T1}×Ω

|uε − u|2 dx,

which follows from the fact that

t 7→ 1

2

ˆ
Ω

|uε(t, x)− u(t, x)|2 dx,

is absolutely continuous on I, with derivative given exactly by(
(uε)t − ut, uε − u

)
(W−1,p′ ,W 1,p

0 )
, for a. e. t ∈ I,

see [23, Proposition 1.2, Chapter III].
For the second term in (5.5), we can use that for every ξ, ζ ∈ RN , we have

〈∇F0(ξ)−∇F0(ζ), ξ − ζ〉 =

N∑
i=1

(
|ξi|p−2 ξi − |ζi|p−2 ζi

) (
ξi − ζi

)
≥ 22−p

N∑
i=1

|ξi − ζi|p ≥
1

C
|ξ − ζ|p,

for some C = C(N, p) > 0. The first inequality can be found in [20, Section 10]. On the other hand, the
convexity of G implies that ∇G is a monotone map and thus

〈∇G (∇uε) ,∇uε −∇u〉 ≥ 〈∇G(∇u),∇uε −∇u〉.
By using these two pointwise estimates in (5.5), we thus get

1

2

ˆ
{T1}×Ω

|uε − u|2 dx+
1

C

¨
I×Ω

|∇uε −∇u|p dt dx ≤ ε
¨
I×Ω

|〈∇G (∇u) ,∇uε −∇u〉| dt dx.

By the Cauchy-Schwarz inequality and the inequality |∇G(ξ)| ≤ (1+ |ξ|)p−1, the right-hand side is not larger
than

ε

¨
I×Ω

(1 + |∇u|)p−1 |∇uε − u| dt dx,

which, by the Young inequality, in turn can be bounded from above by

p− 1

p
ε

¨
I×Ω

|∇uε −∇u|p dt dx+
ε

p

¨
I×Ω

(1 + |∇u|)p dt dx.

Then for every ε > 0, we have

1

2

ˆ
{T1}×Ω

|uε − u|2 dx+

(
1

C
− p− 1

p
ε

)¨
I×Ω

|∇uε −∇u|p dt dx ≤
ε

p

¨
I×Ω

(1 + |∇u|)p dt dx.

This estimate guarantees that the family {∇uε}ε>0 is strongly convergent to ∇u in Lp(I × Ω). This is now
sufficient to pass to the limit in the uniform Lipschitz estimate (4.1), which will be still valid for u, as well.
By a covering argument, this in turn implies

∇u ∈ L∞loc(I × Ω),

as claimed.

Part 2: scale invariant estimate. We finally focus on obtaining the estimate (1.4). We fix

Qτ,R(t0, x0) = (t0 − τ, t0)× (x0 −R, x0 +R)N b I × Ω,

as in the statement of the Main Theorem. By recalling Remark 1.1, we know that for every R > 0 and µ > 0
the function

UR(t, x) = µu(t0 + µp−2Rp t, x0 +Rx),
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is still a local weak solution of our parabolic equation, this time in the rescaled set

Ĩ × Ω̃ :=

(
T0 − t0
µp−2Rp

,
T1 − t0
µp−2Rp

)
× Ω− x0

R
.

We consider the compactly contained cube Q τ

µp−2Rp
,1(0, 0) b Ĩ × Ω̃ and make the choice

µp−2Rp = τ, that is, µ =
( τ

Rp

) 1
p−2

,

so that

Q τ

µp−2Rp
,1(0, 0) = Q1,1(0, 0) = Q1(0, 0).

From Part 1, we know that we can use the a priori estimate (4.1) for UR on the anisotropic parabolic cubes

Q 1
2
(0, 0) =

(
− 1

2p
, 0

)
×
(
−1

2
,

1

2

)N
and Q1(0, 0) = (−1, 0)× (−1, 1)N .

This gives

‖∇UR‖L∞(Q 1
2

(0,0)) ≤ C

(¨
Q1(0,0)

|∇UR|p dt dx

) 1
2

+ C.

If we scale back, we get

(5.6) ‖∇u‖L∞(Q τ
2p
,R
2

(t0,x0)) ≤ C
( τ

R2

) 1
2

( 
Qτ,R(t0,x0)

|∇u|p dt dx

) 1
2

+ C

(
R2

τ

) 1
p−2

.

This already proves the claimed a priori estimate (1.4) for 0 < σ ≤ 1/2p.
For any σ ∈ (0, 1), we can take (t1, x1) ∈ Qστ,σR(t0, x0) such that

‖∇u‖L∞(Qστ,σR(t0,x0)) ≤ ‖∇u‖L∞(Q 1−σ
2p

τ, 1−σ
2

R
(t1,x1)).

Observe that for every (s, y) ∈ Qστ,σR(t0, x0), we have

Q 1−σ
2p τ, 1−σ2 R(s, y) ⊂ Q(1−σ) τ,(1−σ)R(s, y) b Qτ,R(t0, x0).

By applying (5.6) on this parabolic cylinder, we get

‖∇u‖L∞(Qστ,σR(t0,x0)) ≤ ‖∇u‖L∞(Q 1−σ
2p

τ, 1−σ
2

R
(t1,x1))

≤ C√
1− σ

( τ

R2

) 1
2

( 
Q(1−σ)τ,(1−σ)R(t1,x1)

|∇u|p dt dx

) 1
2

+ C (1− σ)
1
p−2

(
R2

τ

) 1
p−2

.

By observing that 
Q(1−σ)τ,(1−σ)R(t1,x1)

|∇u|p dt dx =
1

(1− σ)N+1 (2R)N τ

¨
Q(1−σ)τ,(1−σ)R(t1,x1)

|∇u|p dt dx

≤ 1

(1− σ)N+1 (2R)N τ

¨
Qτ,R(t0,x0)

|∇u|p dt dx

=
1

(1− σ)N+1

 
Qτ,R(t0,x0)

|∇u|p dt dx,

we eventually reach the desired conclusion.
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[22] G. Pisante, A. Verde, Regularity results for non smooth parabolic problems, Adv. Differential Equations, 13 (2008),

367–398. 4

[23] R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. Mathematical
Surveys and Monographs, 49. American Mathematical Society, Providence, RI, 1997. 1, 24, 25, 26

[24] Al. S. Tersenov, Ar. S. Tersenov, Existence of Lipschitz continuous solutions to the Cauchy-Dirichlet problem for
anisotropic parabolic equations, J. Funct. Anal., 272 (2017), 3965–3986 4, 6

[25] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219–240. 5
[26] N. N. Ural’ceva, Degenerate quasilinear elliptic systems, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),
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