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The pear psyllids (Cacopsylla Ossiannilsson; Hemiptera: Psylloidea: Psyllidae) are a taxonomically difficult 
group of at least 24 species native to the Palaearctic region. One or more species occur in most pear-growing 
regions, in some cases as invasive introductions. Existing reviews of this group are primarily of taxonomic 
focus with limited overviews of biology. The earliest biological studies of the pear psyllids centered on a core 
group of a few western European species. In part, this focus arose because diversity of the pear psyllids was 
poorly understood. As taxonomic understanding has advanced over the last 3 decades, research has expanded 
taxonomically. Increasing difficulties in controlling the pear psyllids additionally has contributed to growth 
in research. Here, we review a now-extensive literature on diversity, biology, and management of the pear 
psyllids. Three broad observations emerged from this synthesis. First, large gaps in biological understanding 
of the pear psyllids persist for several geographic faunas, most notably for psyllids of the Eastern Palaearctic 
region. Second, taxonomic diversity is accompanied by biological diversity. Despite the commonality in host 
use among the pear psyllids, with each species being limited to development on Pyrus, striking differences 
exist among species in life cycles, wintering, and other biological traits. Third, many of the tools being used to 
manage pear psyllids today are in existence because of the long history of basic research which has targeted 
these pests. These tools include new insecticides of higher selectivity, various cultural and horticultural tactics, 
and practices that conserve natural enemies in orchards.

Key words: Cacopsylla, Pyrus, taxonomy, biology, biological control

The pear psyllids (Hemiptera: Psylloidea: Cacopsylla) comprise 
24 known species of small sap-feeding insects limited in develop-
mental hosts to pear (Rosaceae: Pyrus). The economic importance 
of the pear psyllids increased noticeably in the mid-1900s with the 
worldwide spread of intensive pear cultivation, arrival of synthetic 
insecticides in orchards, and the beginnings of insecticide resistance. 
Pear psyllids may cause any of several types of damage to commer-
cial pear orchards, including russet and downgrading of fruit due 
to marking of the pear fruit by honeydew and sooty mold, prema-
ture leaf drop and tree decline, and vectoring of the pathogen that 
causes “pear decline”. Heavy infestations may produce honeydew 
in sufficient quantitites to interfere with orchard practices such as 
summer pruning or harvest. Along with codling moth [Lepidoptera: 
Tortricidae: Cydia pomonella (L.)], the pear psyllids rank as the 
most damaging arthropod pests worldwide in commercial pear or-
chards. Of the more than 23 million tons of pears produced globally 

in 2020, about 19 million tons are produced in the northern hemi-
sphere, where China is the most important producer, followed by the 
United States, Italy, Turkey, and Spain (FAO 2020). In the southern 
hemisphere, Argentina, South Africa, Chile, Australia, and New 
Zealand are producers of pears (FAO 2020). One or more species of 
pear psyllid are found in all of these regions except for South Africa, 
Australia, and New Zealand (Cho et al. 2017, 2020).

This review provides an up-to-date introduction to the im-
portant literature worldwide on pear psyllid diversity, biology, 
and management. Previous reviews of the pear-feeding psyllids 
are limited to individual species or are primarily of taxonomic 
focus. The first extensive research on the biology, morphology, and 
anatomy of the pear psyllids was conducted by Slingerland (1892, 
1896) in Eastern North America with the introduced Cacopsylla 
pyricola (Foerster), and by Bonnemaison and Missonnier (1955, 
1956) with the West Palaearctic Cacopsylla pyri (L.). For several 
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decades following the studies of Bonnemaison and Missonnier, 
biological research mostly targeted a core group of a few West 
Palaearctic species. This narrow focus was due in part to their 
damaging presence in Western Europe and North America, but also 
because the limited taxonomic work with this group had not yet 
provided a true picture of its actual diversity. As our taxonomic 
understanding of this group has advanced in the last few decades, 
basic and applied biological research on this group has also ex-
panded. We have made important progress in our understanding 
of pear psyllid feeding behavior, host preferences, acoustic commu-
nication, chemical ecology, dispersal and landscape ecology, bio-
logical control, and microbial interactions. One important product 
emerging in the current synthesis is the demonstration that taxo-
nomic diversity is accompanied by biological diversity: species of 
pear psyllids often differ substantially from one another in biology. 
As also will become apparent, much of the research with this group 
has been prompted by their pest status. Advances in research are 
helping to prompt changes in psyllid control tactics. We are seeing 
important shifts in how pear psyllids are controlled in orchards, as 
broadly toxic insecticides are replaced with a combination of se-
lective insecticides, biological control, and horticultural practices, 
often guided by degree-day models that predict psyllid phenology. 
This synthesis will review many of these topics for this important 
group of insects.

Taxonomy, Diversity, and Distribution of the 
Pear-feeding Psyllids

Order Hemiptera Linnaeus, 1758
Suborder Sternorrhyncha Duméril, 1806
Superfamily Psylloidea Latreille, 1807
Family Psyllidae Latreille, 1807
Genus Cacopsylla Ossiannilsson, 1970
The psyllids or jumping plant-lice (Hemiptera: Psylloidea) are small 
sap-feeding insects in the suborder that includes aphids, scale in-
sects, and whiteflies (Sternorrhyncha). The known diversity of the 
Psylloidea exceeds 4000 described species worldwide, with possibly 
a similar number of undescribed species (Burckhardt et al. 2021). 
Psyllids are found in virtually all terrestrial habitats and inhabit all 
continents other than Antarctica (Burckhardt et al. 2021, Ouvrard 
2022). Life stages consist of the egg, the immature (nymphal) phase, 
and the adult insect (Fig. 1). Traits of the adult that separate the 
Psylloidea from other homopterous Hemiptera include: filiform 
antennae generally of 10 segments; noticeably sclerotized exoskel-
eton; legs adapted for jumping; beak appearing to arise from be-
tween the forelegs; 2 pairs of membranous wings held cicada-like 
over the body, the forewing conspicuously veined and sometimes 
marked with darkened regions. The psyllid egg (Fig. 1D and E) is 
oval in shape, often has a slender filament at its distal end, and is 
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Fig. 1. (A) Female winterform and (B) male summerform of Cacopsylla pyricola (Foerster); (C) female Cacopsylla pyrisuga (Foerster); (D) eggs; (E) eggs and late-
instar nymph; and (F) fifth-instar (hardshell) nymph of C. pyricola.
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light yellow or cream-colored when deposited but darkens with age. 
A pedicel at the basal end of the egg inserts into the host tissue and 
is used to anchor the egg and to uptake water from the host (White 
1968, Horton 1990). Length of the pedicel may exceed that of the 
body of the egg (Loginova 1979, Ossiannilsson 1992, Conci 2000). 
The immature (nymphal) psyllid develops through 5 instars; body 
oval and generally flattened dorso-ventrally; first instar nymph only 
slightly larger than the egg; last-instar stage much larger, often some-
what disk-like, and with conspicuous wing pads (Fig. 1F).

The pear psyllids (Cacopsylla spp.; Psyllidae) comprise a taxo-
nomically difficult group of species distributed throughout the 
Palaearctic Region and (as introductions) in North and South 
America. Developmental hosts are limited to species of pears 
(Pyrus). Pyrus originated over 25 million years ago (Korotkova et 
al. 2018) in 3 areas: the Caucasus and Asia Minor area; the moun-
tainous areas of Western China; and Western Asia in the region com-
prising Afghanistan, India, and the Asian republics of the former 
Soviet Union (Dondini and Sansavini 2012, Volk and Cornille 2019). 
This was followed ~6.6–3.3 million years ago by genetic differenti-
ation into 2 main groups, a European/Central Asian group and an 
East Asia group (Volk and Cornille 2019). Speciation, hybridiza-
tion, and spread has produced a widespread and diverse complex 
of wild and cultivated species distributed throughout the Palaearctic 
Region, from Western Europe to Eastern Asia and Russia, and 
into the Mediterranean Basin and North Africa (Silva et al. 2014, 
Volk and Cornille 2019). Domestication of pears in Asia began 
over 2,500 yr ago, primarily of the species Pyrus pyrifolia Nakai 
and Pyrus ussuriensis Maxim (Morgan 2015), while domestication 
in the Western Palaearctic (primarily of the European pear Pyrus 
communis L.) began possibly 2,300 yr ago (Dondini and Sansavini 
2012). The widely cultivated P. communis is grown in 5 major re-
gions: Europe, North America, South America, South Africa, and 
Oceania (Silva et al. 2014). Production of Asian pear, mostly P. 
pyrifolia, is concentrated in Asia (Silva et al. 2014). Pears arrived in 
Eastern North America with English and French settlers, and were 
introduced into South America by Spanish colonists (Morgan 2015).

The taxonomy of the pear psyllids is difficult. Seasonal di-
morphism, subtle morphological differences between species, poor 
understanding of geographic ranges and host preferences, and un-
critical use of species names has led to much historical confusion 
in the taxonomy and identification of pear psyllids (Hodkinson 
1984, Burckhardt and Hodkinson 1986, Cho et al. 2017, 2020). 
Human-assisted spread of Pyrus followed by range expansion of 
psyllids makes it difficult to identify the native ranges of species. 
Geographical overlap of species leads to assemblages of different 
species co-occurring not just in the same growing region but often on 
the same individual trees (Overmeer 1961, Trapman and Blommers 
1992, Lauterer 1999, Gajski and Pekár 2021). Taxonomic confu-
sion is resolved through morphological work, geographical consider-
ations, host information, and molecular genetics (Hodkinson 1984, 
Burckhardt and Hodkinson 1986, Luo et al. 2012, Cho et al. 2017, 
2020, Chen et al. 2018). At the time of this review, 24 species of 
Cacopsylla are recognized as having Pyrus as a host plant (Cho et al. 
2017). This total likely will increase as the less-studied psyllid faunas 
of the Middle East, India, Central Asia, and Far East Russia receive 
attention (Cho et al. 2017, 2020). Little is known about the biology 
of many species, particularly of the Asian psyllids.

The first taxonomic treatments of the pear psyllids were for the 
Western Palaearctic species. Morphological variation combined 
with data on geography and host associations identified a group 
of 7 species (Hodkinson 1984, Burckhardt and Hodkinson 1986). 
Geographic ranges of species in this assemblage extend as far west 

as Britain and Western Europe, as shown by Cacopsylla pyrisuga 
(Foerster), C. pyri, and C. pyricola; eastwards into Uzbekistan, 
Turkey, and neighboring regions [Cacopsylla fera (Baeva) and 
Cacopsylla bidens (Šulc)]; and southwards into the Mediterranean 
Basin and Middle East, as shown again by C. bidens (Burckhardt 
and Hodkinson 1986, Cho et al. 2017, Akbar et al 2018; see also  
Fig. 2). Descriptions and identification keys are available in 
Burckhardt and Hodkinson (1986). Most species in this group as-
sociate with the European pear (P. communis), although other Pyrus 
also are hosts, such as Pyrus spinosa Forsskål for Cacopsylla notata 
(Flor) and the wild pear Pryus korshinskyi Litvinov hosting C. fera 
(Burckhardt and Hodkinson 1986, Cho et al. 2017). Sympatric spe-
cies may separate ecologically through use of different Pyrus species 
(Burckhardt and Hodkinson 1986). Two species have colonized the 
New World (Fig. 2), likely by transport of infested pear host plants: 
C. pyricola into North America in the early 1800s (Slingerland 1892) 
and C. bidens into South America sometime before the mid-1900s 
(Valle et al. 2017).

Taxonomic work has begun to address the confusing group of 
pear psyllids in the Eastern Palaearctic Region, encompassing areas 
of eastern Russia, China, Taiwan, Japan, and Korea (Yang and 
Huang 2004, Luo et al. 2012, Cho et al. 2017, 2020, Chen et al. 
2018). Species in the Eastern Palaearctic region commonly asso-
ciate with the Asian pears P. pyrifolia and P. ussuriensis (Cho et al. 
2017). Analysis of this fauna has relied on use of molecular genetics, 
morphology, geography, and host information. This approach has 
been used to untangle difficult complexes and to correct historical 
mistakes in species assignments (Luo et al. 2012, Cho et al. 2017, 
2020, Chen et al. 2018). Cho et al. (2020) used DNA barcoding to 
separate species and to correct mistakes in the stated distributions 
of 2 Western Palaearctic species, C. pyricola and C. pyrisuga. These 
species at one time were thought to occur in East Asia but are now 
known to have been misidentifications of east Palaearctic species 
(Cho et al. 2017, 2020). There is no evidence for presence of any 
European pear psyllid in Eastern Asia (Cho et al. 2020). The syn-
thesis of Cho et al. (2017) includes aspects of geography, life cycles, 
and host associations for the East Palaearctic pear psyllids, and pro-
vides keys to the Japanese and Korean species.

Biology

Seasonal Life Cycle
No single life cycle describes the seasonal biology of all pear psyllids. 
Species may differ in life stage that overwinters, generation num-
bers, dispersal tendencies, and use of winter shelter plants. Cho 
et al. (2017) classified the pear psyllids into 3 groups by morph-
ology and life cycle (Table 1): the Cacopsylla pyri-group, Cacopsylla 
pyrisuga-group, and Cacopsylla nigella-group. Life cycle categories 
are based upon generation numbers, presence or absence of seasonal 
dimorphism, and overwintering stage (Table 1). Our understanding 
of the annual cycle is far more extensive for species in the pyri-group 
than the other 2 groups.

Cacopsylla pyri-type life cycle.
The pyri-group consists of 16 species from the Western or Eastern 
Palaearctic regions, and includes important pests such as C. pyri, 
C. pyricola, C. bidens, and C. chinensis (Table 1). Species in this 
group are multivoltine and overwinter in reproductive diapause as a 
seasonally distinctive form or morphotype (Table 1). Much of what 
is discussed here will focus on the well-studied C. pyricola whose 
life cycle is shown in Fig. 3A. Gray and blue fills depict presence 
of adult summer and winter seasonal forms, respectively. Important 
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time points in the life cycle include (Fig. 3A): phenology of the winter 
generation; onset and termination of diapause; autumn dispersal and 
winter return by the overwintering stage; timing of postdiapause de-
velopment; and phenology of the summer generations. Psyllids of 
this group produce a large and dark overwintering adult known 
as the winterform that is distinct from the smaller and lighter 
summerform of the growing season (Fig. 3B). The dimorphism is 

striking enough that morphotypes of some species were described 
originally as separate species (Hodkinson 1984, Burckhardt and 
Hodkinson 1986, Cho et al. 2017, 2020). Production of seasonal 
morphotypes is controlled by photoperiod (C. pyricola: Wong and 
Madsen 1967, McMullen and Jong 1976, Oldfield 1970; C. pyri: 
Bonnemaison and Missonnier 1955; C. bidens: Soroker et al. 2013, 
Madar et al. 2017). Short days lead to production of the winterform 

Fig. 2. Geographic distribution of the commercially important European; Pyrus communis and Asian; Pyrus pyrifolia cultivated pear species and approximate 
global distribution of 4 highly damaging pear psyllids (ovals).

Table 1. Classification of the pear psyllids into 3 groups by morphology and seasonal life histories (Cho et al. 2017); summaries of traits 
from literature (see text)

Trait C. pyri-group C. pyrisuga-group C. nigella-group 

Currently known species C. pyri, C. pyricola, C. bidens, 
C. chinensis (+12 othersa)

C. pyrisuga, C. 
burckhardti, C. accincta

C. nigella, C. liaoli 
(+3 othersb)

Generations per year Multiple 1: obligatory 2 (see text)

Diapause/wintering stage Adult (winterform) Adult Second-instar im-
mature (see text)

Seasonal dimorphism in size and  
color of adult

Yes No No

Dispersal of diapausing adult Yes Yes —

Wintering site(s) Pear host and nonhost shelter 
plants; leaf litter

Coniferous trees Pear host

Diapause termination Early winter Likely early winter Unknown

Timing and rate of postdiapause  
development

Controlled by temperature Likely controlled by temperature Likely controlled 
by temperature

aCacopsylla betulaefoliae (Yang & Li), Cacopsylla donggangica Li, Cacopsylla fera (Baeva), Cacopsylla flavianthracina Li, Cacopsylla gyrogenna Li, Cacopsylla 
jukyungi (Kwon), Cacopsylla maculatili Li, Cacopsylla nervinigra Li, Cacopsylla notata (Flor), Cacopsylla permixta Burckhardt & Hodkinson, Cacopsylla 
xanthisma (Yang & Li), Cacopsylla yunli (Li & Yang).

bCacopsylla phaeocarpae (Yang & Li), Cacopsylla sandolbaea (Park & Lee), Cacopsylla qianli (Yang & Li).
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adult, while long-day photoperiods produce the summerform adult. 
Morphometric analyses have quantitatively shown that size and 
shape of insects differ between morphotypes (C. pyri: Nguyen and 
Grassé 1985; C. bidens: Madar et al. 2017; and C. pyricola: Mustafa 
and Hodgson 1984).

The winterform morphotype overwinters in reproductive dia-
pause characterized by postponed mating and delayed maturation 
of ovaries (Fig. 3A; C. pyri: Bonnemaison and Missonnier 1955, 
Nguyen 1975; C. pyricola: Krysan and Higbee 1990, Krysan 1990, 
Horton et al. 1998, C. bidens: Swirski 1953, Madar et al. 2017). 

A

C E

DB

Fig. 3. (A) Life cycle of north temperate C. pyricola. Filled shapes depict intervals adults are present. Gray and blue colors show summerform and winterform 
generations, respectively; arrows show timing of autumn dispersal and winter orchard reentry. (B) Summerform (upper) and winterform (lower) specimens of 
C. pyricola (females on left). (C) Wintering C. pyricola on evergreen shelter plant, Washington State. (D) Postdiapause mating pair of winterform C. pyricola on 
dormant pear. (E) Eggs of C. pyricola (arrow) inserted into wood at base of spur.
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Diapause may begin later and be of shorter duration in warmer re-
gions than shown in Fig. 3A for north temperate C. pyricola (Swirski 
1953, Nguyen 1975, Lyoussoufi et al. 1994, Soroker et al. 2003, 
Madar et al. 2017). Diapause terminates in winter (Fig. 3A; Krysan 
and Higbee 1990, Horton et al. 1998). Once diapause has ended 
maturation of ovaries is controlled by temperature (Krysan and 
Higbee 1990). Diapause is weaker in winterforms that emerge late 
in autumn than earlier. Thus, winterform C. pyri emerging in late 
summer required a longer time to begin egglaying when moved to 
long-day conditions than insects emerging in late autumn (Nguyen 
1975). Winterform C. pyricola collected in December and moved 
to 20 °C required only ~6 days to begin egglaying, whereas those 
collected in early October required weeks before ovaries matured 
(Horton et al. 1998).

An important trait of at least some species in this group is dis-
persal by the winterform generation (Fig. 3A: arrows). This activity 
is most thoroughly described for North American populations of C. 
pyricola. A varying percentage of the winterform population moves 
out of orchards each autumn and winters on nonhost shelter plants. 
Dispersal leads to redistribution of psyllids among orchards as highly 
infested orchards in autumn lose insects through dispersal to less-
infested orchards the following spring, making it difficult for pear 
growers to anticipate spring pest pressures (Fye 1983, Westigard 
and Hilton 1990, Horton et al. 1992). Dispersal is controlled by 
environmental conditions. Warm and dry conditions in autumn lead 
to larger numbers dispersing than cool and wet years, consequently 
the percentage of an orchard’s population that disperses versus re-
mains in the orchard varies year-to-year (Horton et al. 1992, 1994b). 
Dispersal peaks during leaf fall as psyllids are dislodged from trees 
and fall to the orchard floor (Horton et al. 1993). Densities of 
winterforms on the floor of severely infested orchards following leaf 
fall may exceed 250,000 psyllids ha−1 (Fye 1983). Subsequent move-
ment by dislodged insects leads to recolonization of the pear tree or 
exodus from the orchard (Fye 1983, Horton et al. 1993, 1994b).

Autumn movements by dislodged insects appear in part to be 
due to search for food resources, as suggested by attractiveness of 
foliar colors to winterforms during the dispersal period (Krysan 
and Horton 1991). Pear psyllids require water or a feeding source 
to survive winter (Swirski 1953, Kaloostian 1970, Horton et al. 
1994a). Gut contents analyses show that an array of nonhost plants 
is fed upon by dispersing psyllids (Cooper et al. 2019). Wintering 
C. pyricola accumulate on a variety of plant taxa (e.g., Fig. 3C), 
including tree fruit species, later-defoliating deciduous plants, 
and evergreens (Ullman and McLean 1988a, Horton et al. 1994a, 
1994b). Dispersing winterforms in fact may move from orchards to 
a deciduous species that retains its leaves later than pear, only to 
move again when leaf fall by that second species dislodges the insects 
(Cooper et al. 2019). Psyllids which winter in orchards or on other de-
ciduous plants presumably feed through softer portions of the wood. 
European populations of C. pyricola or other pear psyllids may also 
winter outside of pear orchards. Wintering European C. pyricola 
occur in stone fruit and apple orchards, and on noncultivated tree 
species (Trapman and Blommers 1992, Lauterer 1999, Jarausch et 
al. 2009). While winter records for C. pyri and C. bidens outside of 
pear orchards are not as extensive as for C. pyricola, records show 
that both species can be collected from stone and pome fruit trees in 
winter (Swirski 1953, Trapman and Blommers 1992, Lauterer 1999, 
Burckhardt and Freuler 2000, Jarausch et al. 2009).

Reentry into orchards by overwintered psyllids begins in late-
winter (Fig. 3A: return arrows). The first mature eggs appear in 
the ovaries of postdiapause C. pyri and C. pyricola by late-winter 
(Krysan and Higbee 1990, Trapman and Blommers 1992) or earlier 

in populations at southern latitudes (Wong and Madsen 1967). 
Ovaries of females wintering on nonhost plants mature more slowly 
than ovaries of females wintering on the pear host (Horton et al. 
1994a). Mating (Fig. 3D) and egglaying begin before bud develop-
ment. The earliest eggs are deposited below unopened buds (Fig. 
3E). As bud scales separate oviposition shifts to foliar and floral tis-
sues. Offspring of the winterform generation emerge in late spring 
as the season’s first summerform generation (Fig. 3A), followed by 
1 or more additional generations per year depending upon latitude 
(Westigard and Zwick 1972).

Cacopsylla pyrisuga-type life cycle.
Pear psyllids of the pyrisuga-group have a substantially different 
life cycle (Table 1, Fig. 4). The pyrisuga-group consists of 1 Western 
Palaearctic species and 2 Eastern Palaearctic species (Table 1). The 
following details are for the Western Palaearctic C. pyrisuga (Fig. 1C). 
Cacopsylla pyrisuga has a single generation per year and overwinters 
in diapause off of the host plant (Fig. 4). This life cycle leads to the 
unusual circumstance in which the pear host is free of the psyllid for 
most of the year, which caused a great deal of confusion in early bio-
logical accounts of this species (Brocher 1926). Cacopsylla pyrisuga 
winters almost exclusively on conifers, although there are scattered 
records from broad-leaf tree species (Lazarev 1975, Conci et al. 
1993, Lauterer 1999). Ovarian maturation begins in overwintering 
sites, and insects collected from conifers in late-winter and moved 
to pear shoots will begin egglaying immediately (Lazarev 1975). 
Postdiapause C. pyrisuga migrate to pear trees from wintering sites 
in March and April (Conci et al. 1993, Burckhardt 1994, Lauterer 
1999). The earliest eggs are deposited on new leaves or floral parts 
as buds begin to open (Burckhardt 1994, Lauterer 1999). The single 
generation of immatures is followed by new adults in May and June 
and dispersal onto shelter plants (Fig. 4; Lazarev 1975, Burckhardt 
1994, Lauterer 1999). The population essentially will have dis-
appeared from the pear host by June or July (Fig. 4; Overmeer 1961, 
Conci et al. 1993, Lauterer 1999). Dispersal to high-altitude conifers 
is assisted by up-slope summer winds (Lauterer 1999); return to the 
host plant in late-winter also is wind-aided (Lazarev 1975).

Cacopsylla nigella-type life cycle.
The C. nigella-group includes 5 species distributed in Eastern Russia, 
Korea, and temperate China (Table 1; Cho et al. 2017). Species in 
this group are defined by black or dark brown coloration and by 
patterns of spinules on the surface of the forewings (Luo et al. 2012, 
Cho et al. 2017). The life cycle assumed to apply to members of the 
nigella-group is from observations of Cacopsylla liaoli (Yang and 
Li). Cacopsylla liaoli is said to have 2 generations annually and to 
winter on the pear host as second instar immatures near buds or in 
the axils of branches (Pang and Pang 1990, Wang et al. 2012). This 
life history strategy appears to be unknown for any other Cacopsylla 
(Hodkinson 2009). Additional research with C. liaoli or new re-
search with other members of the nigella-group to verify this life 
cycle would be useful.

Fecundity, Adult Longevity, and Development Time
Life history data are available for several West Palaearctic species 
(C. pyricola, C. bidens, C. pyri, C. pyrisuga) and 1 Asian species 
(C. chinensis). Adult longevity differs among species depending upon 
life cycle. Longevity of the univoltine C. pyrisuga is 300–330 days 
with much of that time spent by the psyllid away from the pear host 
(Fig. 4; Lazarev 1975). Life span of the winterform morphotype of 
multivoltine psyllids may be ~6–7 mo, again with much of the interval 
spent in diapause (Fig. 3A). In contrast, longevity of summerform C. 
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pyricola reared under laboratory conditions is ~50–80 days at mod-
erate temperatures (21–24 °C) or briefer at warmer temperatures 
(McMullen and Jong 1977). Life span in the field is even shorter, 
ranging between 16–32 days for C. bidens in Israel (Swirski 1953), 
14–28 days for C. pyri in Greece (Kapatos and Stratopoulou 1996), 
and 18–26 days for C. chinensis in China (Wei et al. 2020).

Laboratory-based estimates of lifetime fecundity are impressively 
high for some species, exceeding 1,000 eggs per female by winterform 
C. pyricola (McMullen and Jong 1977, Horton and Lewis 1996) and 
the univoltine C. pyrisuga (Lazarev 1975). Weekly dissection and 
counting of mature eggs suggested that potential lifetime fecundity 
of winterform C. pyri exceeds 2,000 eggs (Lyoussoufi et al. 1988). 
One winterform female C. pyricola in the assay of Horton and Lewis 
(1996) deposited over 2,700 eggs during an egglaying period that 
exceeded 3 mo. Fecundity of C. pyricola in other laboratory studies 
is lower than these estimates, with averages of 300–490 eggs per 
winterform female and 140–660 eggs per summerform female (Burts 
and Fischer 1967, McMullen and Jong 1977). Fecundity drops at 
high temperatures (McMullen and Jong 1977). Field estimates of 
fecundity are noticeably lower than estimates from laboratory trials. 
Lifetime egg production under field conditions has been estimated 
for summerform C. bidens (50–170 eggs: Swirski 1953) and C. 
pyricola (70–190 eggs: Georgala 1956, McMullen and Jong 1972); 
and, winterform C. pyricola (200 eggs: Georgala 1956) and C. pyri 
(135–150 eggs: Kapatos and Stratopoulou 1996). Field data are 
available for 1 Asian species, C. chinensis, estimated at 25–70 eggs 
per summerform female (Wei et al. 2020).

Minimum temperatures allowing egg and nymphal development 
are 2–4 °C for C. pyri (Beránková and Kocourek 1994, Kapatos and 
Stratopoulou 1999, Schaub et al. 2005) and 6.5 °C for nymphs of C. 
pyrisuga (Lazarev 1975). Egg development times are about 1 wk at 
22–24 °C but longer at cooler temperatures (Swirski 1953, Lazarev 
1975, McMullen and Jong 1977, Kapatos and Stratopoulou 1999). 

Total nymphal development times for C. pyricola at a constant 21 °C 
averaged about 24 days (McMullen and Jong 1977). Nymphal de-
velopment times under orchard conditions have been reported at dif-
ferent intervals of the growing season for C. bidens (Swirski 1953), 
C. pyri (Kapatos and Stratopoulou 1999), and C. pyricola (Georgala 
1956), and unsurprisingly changed with time of year due to tem-
perature and changes in host quality. Phenological and demographic 
models have been developed from life history data for C. pyri, C. 
pyricola, and C. chinensis, and are now being used to guide pest 
control decisions (Schaub et al. 2005, Wei et al. 2020, Nottingham 
et al. 2022b).

Host Selection and Feeding Behavior
The term “host plant” as used for Psylloidea refers to plant species 
which allow egg-to-adult development (Burckhardt et al. 2014). Like 
other psyllid species, the pear psyllids regularly visit, probe, and in-
gest from plant species that do not allow development (Cooper et al. 
2019). While the pear psyllids are limited in developmental hosts to 
species of Pyrus, psyllid species exhibit distinct differences in choice 
of Pyrus species (Hodkinson 1984, Burckhardt and Hodkinson 
1986, Cho et al. 2017). Discriminating between host and nonhost 
species progresses through a series of behaviors which begin with 
locating a potentially suitable plant, settling upon and probing the 
plant, ingesting plant sap, and egglaying. These behavioral compo-
nents are governed by plant-associated cues that in turn are detected 
and evaluated by different types of sense organs or sensilla associ-
ated with different structures of the insect (Fig. 5). Many of these 
behavioral processes as well as the function of different sensilla are 
not well-understood.

The broadest grouping of behavioral components guiding host 
selection is feeding, which for sap-feeding insects includes all activ-
ities that lead to colonization of the host plant, decisions to insert 
the mouthparts into plant tissues, and ingestion of plant sap (Backus 

Fig. 4. Seasonal life cycle of C. pyrisuga.
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2000). The initial component, locating the host from a distance, 
likely is governed by visual or olfactory cues detected by ocular or-
gans and olfactory sensilla on the head and antennae (Fig. 5). The 
importance of visual cues is shown by the attractiveness of certain 
colors to pear psyllids (Adams et al. 1983, Krysan and Horton 
1991). Reflectance peaks that mimic foliar colors (yellow or green 
hues) were more attractive to pear psyllids than blue, red, or black 
colors (Adams et al. 1983). In artificial feeding trials, reddish-orange 
hues are more effective at prompting C. bidens to probe than color-
free or blue colors (V. Soroker unpubl.). The role of plant volatiles 
in host location by pear psyllids has received very little attention. 
Electroantennogram assays and olfactometer trials have shown that 
C. bidens responds to volatiles emitted from pear trees (Soroker et al. 
2004). The compounds which elicited the responses are not known.

Colonization of a prospective host is followed by settling of the 
insect and probing activity (insertion of mouthparts into host tissues). 
These behaviors likely occur in response to chemical and physical 
cues on the plant surface, and apparently are detected by gustatory 
and mechanoreceptor sensilla on the mouthparts and tarsi (Fig. 5). 
Cacopsylla pyricola often scrapes the leaf surface with its tarsi prior 
to probing, presumably to confirm that the necessary chemical cues 
are present (Ullman and McLean 1988a, 1988b, Horton and Krysan 
1990). This activity may indicate that chemoreceptors are present on 
the tarsi of pear psyllids (Fig. 5). Decisions to probe may be delayed 
following contact with leaves of nonhost species relative to the rapid 
probing decisions made when the pear host is colonized (Horton and 
Krysan 1991). The delay on nonhost species also suggests that cues 
on the leaf surface affect decisions to probe.

Probing consists of all activities that occur while the mouthparts 
(stylets) are embedded in host tissues, and includes manipulation of 
stylets through plant tissues, salivation, tasting, and ingestion. These 
activities are governed by gustatory and mechanoreceptor sensilla as-
sociated with the mouthparts and alimentary canal (Fig. 5). Because 
stylet-activities occur within plant tissues and cannot be directly ob-
served, electropenetration graph technology (EPG) has been used to 
examine the probing behavior of pear psyllids (C. pyricola: Ullman 
and McLean 1988a, 1988b; C. pyri: Civolani et al. 2011, 2013). 
Probing begins with pathway activities as the stylets penetrate paren-
chyma tissues to reach the vascular tissues (Fig. 6A and B). A salivary 

sheath is deposited during this activity and is thought to protect the 
stylets and to suppress plant defenses (Fig. 6B). Stylets penetrate the 
tissues intracellularly (Ullman and McLean 1988a, 1988b, Civolani 
et al. 2011). Pathway activities typically are followed by xylem in-
gestion (Fig. 6C) or by phloem activities (Fig. 6D). Phloem activ-
ities include alternating bouts of salivary discharge and ingestion 
of phloem sap. Nymphs of C. pyri reach the vascular tissues more 
quickly than adults and exhibit longer durations of phloem-feeding 
(Civolani et al. 2011). Winterform C. pyri spend less time in phloem 
and more time in xylem than summerforms (Civolani et al. 2011).

The final component of host selection is egglaying. Decisions to 
deposit eggs apparently are governed in part by cues perceived by 
the female while probing. Female C. pyricola rarely initiate egglaying 
immediately upon contact with the host plant but first engage in 
bouts of probing, suggesting that cues at the plant surface alone are 
not enough to prompt egglaying (Horton and Krysan 1990, 1991). 
Mechanical cues appear to have a role in egg placement. Eggs depos-
ited by overwintered psyllids often are placed in grooves below fruit 
spurs (Fig. 3E) possibly in response to physical cues. Summerforms 
of C. pyricola preferentially insert eggs along leaf midvein, in leaf 
deformations, or next to debris on the leaf surface (Horton 1990). 
Psyllids in search of oviposition sites drag the tip of the abdomen 
across the plant surface presumably in search of appropriate phys-
ical cues (Horton and Krysan 1990). This behavior may indicate 
that mechanoreceptors are present at the tip of the psyllid abdomen. 
Female C. pyricola can be “tricked” to insert eggs into smooth and 
less preferred regions of the leaf by attaching a physical cue such as a 
small piece of adhesive tape to the leaf blade (Horton 1990).

Nutritional Ecology
To compensate for the poor nutritional quality of phloem sap, 
the pear psyllids consume large volumes of the sap and egest the 
undigested end-products in a sugary honeydew. Le Goff et al. 
(2019) identified the components of phloem sap used by C. pyri 
by comparing sugar and amino acid composition of phloem to 
that of egested honeydew. Sugars in the phloem of Pyrus consist 
of sorbitol and sucrose. Concentration of sucrose in honeydew 
was lower than in phloem, indicating that sucrose was ingested 
and assimilated by C. pyri, likely as an energy source (Le Goff 

Eye and ocellus

Tarsal mechanoreceptor sensilla;

D. citri (Zhang et al. 2019)

Mandibular mechanoreceptor sensilla;

C. pyricola (Forbes 1972)

Antennal olfactory sensilla;

C. bidens (Soroker et al. 2004)

Labium gustatory sensilla;

C. chinensis (Liang et al. 2013)

Labium mechanoreceptor sensilla;

C. chinensis (Liang et al. 2013)

Tarsal gustatory sensilla;

D. citri (Zhang et al. 2019)

Precibarial gustatory sensilla;

C. pyricola (Ullman and McLean 1986)

Fig. 5. Schematic of sensilla involved in feeding behavior of the pear psyllids.
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et al. 2019). Sorbitol appears not to be assimilated in quantity. 
Quantities of different amino acids in phloem versus honeydew 
suggested that 7 amino acids (serine, histidine, arginine, alanine, 
phenylalanine, leucine, and lysine) were assimilated by C. pyri 
in large amounts (Le Goff et al. 2019). Four other amino acids 
(methionine, tryptophan, asparagine, and glutamine) were either 
not detected in phloem or were egested in larger amounts than 
expected (Le Goff et al. 2019). The authors suggested that these 
4 amino acids probably are synthesized by bacterial endosym-
bionts harbored by the psyllid (discussed below in Microbial 
Interactions).

Mating Behavior
Studies of mate-locating behavior, cues used in locating mates, court-
ship, and events leading to insemination are limited to 4 species: 
C. pyri, C. bidens, C. pyricola, and C. chinensis. Research with the 
Psylloidea indicates that 3 codependent modalities (acoustic, olfac-
tory, visual) combine to bring the sexes together for mating (Lubanga 
et al. 2014). The male psyllid must first locate the female, approach 
and successfully court her, engage in copulation, and then transfer 
sperm. The precise roles of acoustic, olfactory, and visual cues in 
mediating this sequence of events are not fully understood despite 
significant progress in the last 3 decades (reviews in Lubanga et al. 
2014, Mankin and Rohde 2020, Liao et al. 2022).

Acoustic communication.
Vibrational communication between male and female psyllids occurs 
in at least 6 families of Psylloidea and in more than 100 psyllid spe-
cies in 47 genera (Liao et al. 2022). The vibrations are sent through 
the plant substrate and are quite different from the airborne acoustic 
signals of other insects in operating at a much shorter range (Lubanga 
et al. 2014, Liao et al. 2022). Ossiannilsson (1950) was first to de-
scribe vibrational sounds of psyllids after detecting a faint buzzing 
noise emanating from a psyllid-filled glass tube. More than 30 yr 
later, the first recording (oscillogram) of waveforms produced by 
psyllids was described from the vibrations of Liviidae psyllids (Liao 
et al. 2022). Signaling is in the form of duets, in which male and fe-
male insects exchange sex-specific vibrations (Liao et al. 2022). The 
duet is initiated by the male, with the female responding to the male’s 
call (Lubanga et al. 2014, Liao et al. 2022). The back-and-forth ex-
change of signals brings the sexes together for mating (Lubanga et 
al. 2014, Liao et al. 2022). Signals appear to be produced by rapid 
vibration of wings and rubbing of the axillary sclerites and anal vein 
or anal region of the forewings against ridges on the psyllid thorax 
(Fig. 7A). Taylor (1985) suggested that hind wings may also be in-
volved, but this remains uncertain (Liao et al. 2019, Avosani et al. 
2022).

Eben et al. (2015) were first to describe the male and female 
acoustic signals for a pear psyllid (C. pyri). The vibrational se-
quence of male C. pyri consists of 4–11 (Eben et al. 2015) or 6–18 

A

DC

B

Fig. 6. Probing sequences for C. pyri leading to ingestion from the host plant (Civolani et al. 2011, 2013). (A) Nonprobing phase; (B) penetration of parenchyma 
tissues by stylets and deposition of the salivary sheath; (C) penetration of the xylem by stylets and ingestion of xylem contents; (D) penetration of phloem sieve 
elements by stylets, and subsequent bouts of salivary discharge and ingestion of phloem contents.
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(S. Civolani unpubl.) short-pulsed “chirps” followed by a drawn-out 
interval of 300 or more rapid pulses collectively referred to as 
a “trill” (Fig. 7B). The female signal is a series of short pulses, or 
“chirps”, which may extend for several seconds (Fig. 7B; Eben et al. 
2015). Females call only in the presence of calling males (Eben et al. 
2015). A short and variable delay (“reply latency”) occurs between 
the end of the male signal and initiation of female response (Fig. 7B; 
Eben et al. 2015, S. Civolani unpubl.). The vibrational signals of a 
second pear psyllid, C. pyricola, have also been described (Jocson 
2020). Waveforms of summerform C. pyricola are somewhat similar 
to those of C. pyri. The male song again begins with a series of pulses 
which transition into a trill or “whine” (Jocson 2020). Following a 
reply latency of several seconds, the female responds with a series of 
short chirps (Jocson 2020). The song of the winterform morphotype 
appears to be of lower pitch than that of the summerform (Jocson 
2020). Additional research almost certainly will show that pear 
psyllids other than C. pyri and C. pyricola also engage in acoustic 
duets. Cacopsylla bidens, for example, exhibits a wing-vibrating be-
havior during courtship (V. Soroker unpubl.), which likely is evi-
dence for vibrational signaling.

Chemical communication.
Chemical communication via pheromones has a significant role in 
mate location behavior of many insects. Electroantennogram trials 
with C. bidens showed that male antennae are sensitive to female-
produced volatiles, while olfactometer trials showed that male 
psyllids are attracted to volatiles from females (Soroker et al. 2004). 
This study is the first evidence for any psyllid species that mate se-
lection involves female-produced chemical cues. Subsequently, males 
of 3 other pear psyllids, C. pyricola, C. pyri, and C. chinensis, were 
shown in olfactometer trials to be attracted to females or to surface 
washes of females (Horton et al. 2008, Guédot et al. 2009a, 2011, 
Wan et al. 2013, Ganassi et al. 2018). Efforts to identify the attract-
ants have focused on cuticular hydrocarbons (CHCs). The epicuticle 
of pear psyllids harbors long chain hydrocarbons consisting largely 
of straight chain and branched alkanes. Most of the compounds are 
found in both sexes (Guédot et al. 2009b, Soroker et al. 2010, Wan 
et al. 2013, Ganassi et al. 2018). However, the sexes do differ in 
relative quantities of chemicals. Compounds at higher quantities 
in females than males include 13-methylheptacosane (13-Me C27) 
in C. pyricola, C. bidens, C. pyri, and C. chinensis (Guédot et al. 
2009b, Soroker et al. 2010, Wan et al. 2013, Ganassi et al. 2018); 
11,15-dimethylheptacosane, 2-Me C27, and 3-MeC27 in C pyri 
(Ganassi et al. 2018); and 7-Me C27 and 11, 15-dimethylheptacosane 
in C. bidens (Soroker et al. 2010). In olfactometer trials, males of  

C. pyricola were attracted to 13-Me C27 (Guédot et al. 2009b) while 
males of C. bidens were attracted to 7-Me C27 (Soroker et al. 2010).

The similarity in chemical profiles across species of pear psyllids 
suggests that the methyl-branch heptacosanes are important in 
sexual communication within this taxon, while the slight differences 
among species probably evolved as species isolation mechanisms. 
The low volatility of the compounds means that they likely act only 
at close range. Males of C. pyricola antennate females upon contact 
(Krysan 1990) likely in response to these compounds. During the 
initial postcontact stages of sexual behavior the hydrocarbons may 
function in mate recognition and in evaluating reproductive status. 
Attraction to these chemicals is not strong and fluctuates season-
ally (Guédot et al. 2009b, Soroker et al. 2010), thus it is possible 
that the CHCs are not the only chemical signals operating in sexual 
communication by the pear psyllids. Molecules of higher volatility 
produced by adult psyllids, their secretions, or psyllid-infested host 
plants could be present and contribute to longer-range sexual attrac-
tion (Lubanga et al. 2014).

Courtship, mating, and sperm transfer.
Once duetting or other behaviors have brought the male and female 
psyllid together, activities that lead to copulation begin. These behav-
iors are initiated by the male (Cook 1963, Krysan 1990). Approach 
of the female by the male psyllid seems to be governed in part by 
visual cues, as sexually active male psyllids readily approach other 
males, aphids, or even psyllid-sized bits of debris that have been dis-
lodged onto beating sheets during sampling (D. Horton unpubl.). 
Male C. pyricola in small plastic arenas detected females from dis-
tances of 3  cm or more (Krysan 1990), presumably through use 
of visual and possibly chemical cues. The male psyllid directly ap-
proaches the female (Cook 1963, Krysan 1990). Contact is followed 
by antennation of the female by the male (Krysan 1990). The male 
then rotates his body to be aligned parallel with that of the female 
and curves the tip of his abdomen toward the tip of the female’s ab-
domen for coupling (Cook 1963, Krysan 1990). A female may resist 
copulation by raising the tip of her abdomen away from the male 
(Krysan 1990). Positioning of genitalic structures during copulation 
is described for C. pyricola by Slingerland (1892) and Cook (1963). 
Sperm are transferred to the female in packets (spermatophores), 
with a single spermatophore being transferred per copulation 
(Krysan 1990). Copulation duration for C. pyricola averages be-
tween 10 and 30 min although couplings exceeding 3 hrs have been 
reported (Burts and Fischer 1967, Krysan 1990). Both sexes mate 
repeatedly (Krysan 1990), and in fact repeated mating is needed to 
attain maximum fecundity and egg fertility (Burts and Fischer 1967). 

BA

Fig. 7. (A) Schematic of psyllid in dorsal view showing anal region of wings (blue shading) and regions of thoracic ridges (red shading) thought to be involved 
in producing vibratory signals (Taylor 1985, Eben et al. 2015, Liao et al. 2019, Avosani et al. 2022). (B) Oscillogram of the C. pyri male–female duet (S. Civolani, 
unpublished data; see also Eben et al. 2015).
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A single male C. pyricola may transfer over 9 spermatophores to a 
female within a 24-h period (Krysan 1990).

Microbial Interactions
The pear psyllids harbor bacterial endosymbionts having any number 
of effects, including roles in host nutrition, feeding behavior, and 
vector competency. “Ca. Carsonella rudii” is a maternally-inherited, 
obligate endosymbiont found in all psyllid species, including in the 
pear psyllids (Thao et al. 2000b, Cooper et al. 2015, Schuler et al. 
2022). This bacterium lacks genes for basic metabolic function and 
relies upon the psyllid host to provide metabolic needs (Nakabachi 
et al. 2006). Carsonella provides the psyllid with essential amino 
acids lacking in the phloem diet (Nakabachi et al. 2006). In other 
phloem-feeding insects, elimination of obligate endosymbionts 
having a nutritional role results in death of the host (Rupawate et 
al. 2023). Carsonella bacteria reside within specialized insect cells 
called bacteriocytes contained in an orange bacteriome (Fig. 8A 
and B; Chang and Musgrave 1969, Cooper and Horton 2014). This 
endosymbiont often is accompanied in the bacteriome by either “Ca. 
Arsenophonus” or “Ca. Sodalis” (Fig. 8C). Both endosymbionts 
likely assist with psyllid nutrition (Sloan and Moran 2012, Hall et 
al. 2016, Morrow et al. 2017). Arsenophonus has been detected in 
C. pyrisuga, C. pyri, and C. pyricola (Cooper et al. 2017, Štarhová 
Serbina et al. 2022b). In addition to effects on psyllid nutrition, 
Arsenophonus also may affect susceptibility to insecticides, para-
sitism, disease, or host plant defenses, as shown in other psyllids 
(Thao et al. 2000a, Spaulding and von Dohlen 2001, Hansen et al. 
2007). Sodalis is present in psyllids from multiple families (Thao et 
al. 2000a, 2000b, Sloan and Moran 2012, Hall et al. 2016, Cooper 
et al. 2022); its detection in the pear psyllids at this time is limited 
to the eastern Palaearctic C. burckhardti (Nakabachi et al. 2022).

Other bacteria harbored by the pear psyllids include taxa 
which occur also in the Pyrus host plant. “Ca. Liberibacters” are 
insect-transmitted bacterial plant pathogens associated with glo-
bally important crop diseases such as citrus greening and potato 
zebra chip (Jagoueix et al. 1994, Hansen et al. 2008, Liefting et 
al. 2008). The first Liberibacter to be found in a pear psyllid, “Ca. 
Liberibacter europaeus”, was discovered in populations of C. pyri in 
Italy (Raddadi et al. 2011). A broader survey revealed that 2 other 
pear psyllids, C. pyricola and C. pyrisuga, also harbor the pathogen 
(Camerota et al. 2012). The bacterium has not been detected in 
North American populations of C. pyricola (Cooper et al. 2017). 
Liberibacter europeaus does not appear to cause disease symptoms 
in pear or other fruit trees (Raddadi et al. 2011, Camerota et al. 
2012) but may cause mild symptoms in scotch broom (Cytisus 
scoparius) following transmission of the pathogen by a broom 
psyllid, Arytainilla spartiophila (Foerster) (Thompson et al. 2013, 
Tannières et al. 2020). Liberibacters alter the biology and behavior 
of some psyllid species (Davis et al. 2012, Mann et al. 2012a, 
Nachappa et al. 2012, Mas et al. 2014), but it is not known whether 
Liberibacter europaeus affects biology of pear psyllids, nor is it clear 
how the bacterium is maintained in psyllid populations.

“Ca. Phytoplasma pyri” is the pathogen that causes decline dis-
ease in pears, shown by yellowing of leaves, decreased tree vigor, 
and death of the tree. Known vectors of Phytoplasma pyri are C. 
pyricola, C. pyri, and C. pyrisuga (Jensen et al. 1964, Lemoine 1991, 
Riedle-Bauer et al. 2022). The pathogen is found in pear-growing 
regions of North America, Europe, Africa, and Asia (Eleftheriou and 
Tamoutseli 1985, Jarausch and Dosba 1995, Lee et al. 1995, Davies 
and Adams 2000, Ben Khalifa et al. 2007, Liu et al. 2011). Although 
resistant rootstock now protects trees from long-term infection, 
20–30% of pear psyllids in North America and Europe still harbor 

the pathogen, with the highest incidence of infection in overwintered 
psyllids (Camerota et al. 2012, Cooper et al. 2017, Riedle-Bauer et 
al. 2022). Overwintered psyllids likely re-infect trees each spring. 
Phytoplasma is acquired by psyllids when they feed upon the phloem 
of infected plants. The pathogen passes through the midgut wall of 
the psyllid (Fig. 8D), multiplies in the salivary glands, and is trans-
mitted when the insect discharges saliva into phloem of the pear host 
(Sugio and Hogenhout 2012, Cruz et al. 2018). Some phytoplasmas 
may manipulate the feeding or host-seeking behavior of insect hosts, 
possibly by altering attractiveness of the host, or by affecting biology 
of the insect vector (Sugio and Hogenhout 2012). The behavioral 
changes may improve vector competency. Little is known of whether 
Phytoplasma pyri affects behavior of the pear psyllids, although 
Cruz et al. (2018) showed that phytoplasma-infected C. pyricola 
were less likely than uninfected psyllids to disperse from the pear 
host and become captured on yellow traps. The possible effects of 
this behavioral change on spread of the pathogen are unknown.

Pest Management

Types of Damage
The pear psyllids cause several types of damage. The primary damage 
is “pear russet”, or marking of fruit by psyllid honeydew and an 
associated sooty mold. Immature psyllids excrete large quantities 
of a syrupy honeydew (Fig. 9A) which causes blotches or streaks 
as it drips onto the surface of the pear fruit (Fig. 9B), leading to 
downgrading of the harvested pear (Burts 1970). Heavily infested 
orchards also become very sticky, which interferes with harvesting 
or other labor activities. Damage known as “psylla shock” also is 
caused by nymphs. High densities of nymphs lead to defoliation, re-
duced fruit size, and premature fruit drop (Burts 1970). The damage 
apparently is caused by a toxin in the saliva of nymphs (Beers et al. 
1993). Symptoms may carry over between consecutive years (Beers 
et al. 1993). Lastly, “pear decline”, caused by a phytoplasma vec-
tored by adult pear psyllids (see previous section), leads to decline 
in health of infected pear trees. The disease in North America was 
initially detected during the 1940s in western Canada (McLarty 
1948). It possibly was present earlier than this in Europe (Ogawa 
and English 1991). Pear decline was extraordinarily damaging in 
Western North America during the 1960s, with the loss of almost 
1 million pear trees in Washington, Oregon, and California (Ogawa 
and English 1991). The disease is managed by planting on rootstock 
that prevents overwintering of the pathogen in roots (Westwood and 
Lombard 1966, Çağlayan et al. 2022).

Monitoring
Several sampling methods have been developed to monitor the pear 
psyllids. These tools deliver information on generational phenology, 
timing of autumn dispersal and spring reentry, and onset of egglaying 
in spring (reviewed in Horton 1999). Monitoring is also a critical part 
of making control decisions, particularly when it can be combined 
with information on levels of economic damage expected from a 
given psyllid density (Westigard et al. 1981, Burts 1988, Nottingham 
et al. 2022b). Each monitoring tool has its own strengths and weak-
nesses in ease of use and in what the count data mean with respect 
to actual densities of psyllids and damage potential.

The typical method for sampling the adult psyllid is by jar-
ring the insects from tree limbs onto a cloth-covered tray (Burts 
and Retan 1973, Nottingham et al. 2022b). Samples are taken by 
holding the tray beneath a limb and sharply rapping the limb with 
a section of stiff rubber hose. Dislodged insects cling to the cloth 
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and are counted. The threshold counts of psyllids on trays which 
indicate that treatment is necessary to manage russet are discussed 
in Nottingham et al. (2022b) and DuPont et al. (2023). A second 
method for monitoring the adult psyllid is with use of sticky cards. 
This tool is less useful for guiding management decisions than trays 

because trap catch includes components of psyllid behavior that act 
independently of psyllid density. Trap counts suffer from the con-
founding effects of psyllid flight activity making it difficult at times 
to interpret what a given trap catch indicates (Horton 1993, 1994, 
1999). Trap captures are almost invariably male-biased (Fig. 10), 

Fig. 8. (A) Orange-colored bacteriome of C. pyricola indicated by the white arrow houses beneficial bacteria. (B) The obligate endosymbiont, Carsonella 
rudii, fluorescing green to show its location within bacteriocytes of C. pyricola; note the shadows showing the nucleus of the bacteriocyte. (C) The secondary 
endosymbiont, Arsenophonus, fluorescing green to show its location within the syncytium tissues of the bacteriome; note the shadows showing location of 
bacteriocytes without Arsenophonus. (D) Phytoplasma fluorescing green to show its location in the alimentary canal of C. pyricola collected from phytoplasma-
infected pear trees.
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even at times when male and female counts on beating trays are close 
to equal or are female-biased, apparently due to search by males for 
females. This can lead to relatively poor correlation between trays 
and traps in estimates of psyllid pressure in pear orchards (Horton 
and Lewis 1997).

Spur and leaf samples are used to monitor densities of eggs and 
nymphs (Burts and Retan 1973, Westigard et al. 1979, Burts 1988). 
Before bud swell in late-winter most eggs are found at the base of 
fruiting spurs (Fig. 3E; Westigard et al. 1979). Once flowers within 
a single cluster have separated, the leaves associated with fruiting 
spurs are monitored (Burts and Retan 1973, Westigard et al. 1979). 
For summer generations leaf samples are taken (Burts and Retan 
1973, Westigard et al. 1979). Treatment thresholds for russet using 
spur and leaf samples are provided by Nottingham et al. (2022b) 
for C. pyricola and Sanchez et al. (2022) for C. pyri. Complications 
in sampling are caused primarily by seasonal changes in the spa-
tial distribution of eggs and nymphs (Burts 1988, Stratopoulou and 
Kapatos 1992, Sanchez and Ortín-Angulo 2011).

Chemical Control and Insecticide Resistance
Synthetic insecticides have been the cornerstone of pear psyllid 
control since the arrival of the organophosphates in the 1940s. 
Difficulties in controlling the pear psyllids is due to several bio-
logical traits, including high fecundity, overlapping generations, 
and insecticide resistance. Resistance substantially affected the 

progression of insecticides arriving both in Europe (Atger 1979) 
and North America (Harries and Burts 1965), characterized by the 
arrival and then replacement of individual insecticides or of entire 
classes of insecticides. Resistance largely was responsible for the be-
ginnings of integrated control in which selective insecticides are used 
in combination with biological control and cultural practices (Burts 
1981). Quantities and types of insecticides often are quite variable 
across pear-growing regions. In Washington and Oregon, integrated 
programs for C. pyricola may consist of 6–8 applications of insecti-
cides annually (DuPont and Strohm 2020, DuPont et al. 2021). In 
contrast, programs for C. pyri in Northeast Italy rely on 2 or 3 ap-
plications of insecticides annually (S. Civolani unpubl.); in Spain 3–4 
applications (D. Bosch-Serra pers. comm.); and in southern France 
often only prebloom applications of kaolin clay and a summer ap-
plication of an insecticide (G. Sévérac pers. comm.). In southwestern 
Turkey, 8–10 applications of insecticides annually may be used 
against C. pyri (Oz and Erler 2021). Six applications may be used 
to control C. bidens in Israel (V. Soroker unpubl.), while in Chile – 
where C. bidens is introduced – the insect apparently is not targeted 
with insecticides (S. Civolani unpubl.).

Chemical control of the pear psyllids focuses on 2 seasonal time 
periods divided by tree growth stage (Fig. 11): dormant/delayed 
dormant (prebloom); and, the postbloom period. The life stages of 
psyllids targeted by insecticides change through time and between 
pre- and postbloom time periods (Fig. 11). Prebloom insecticides 
were first used against a pear psyllid in the early-1900s against North 
American populations of C. pyricola. The overwintered psyllid was 
targeted with applications of petroleum oil to kill eggs and to deter 
egglaying (Strickland 1925, Ross 1926). Oil combined with an in-
secticide was used against newly hatched nymphs beginning in the 
early 1900s with mixtures of oil and lime sulphur (Hartzell 1925, 
Strickland 1925). At mid-century, insecticides such as dinitro-ortho-
cresol (Hamilton 1948, Madsen and Marshall 1961) or the organo-
phosphates were used in oil during the prebloom period, but were 
abandoned with arrival of pyrethroids in the 1980s (Buès et al. 
2003). As it became apparent that prebloom insecticides interfered 
with season-long control of psyllids due to disruption of biological 
control (e.g., Westigard 1973a, Burts 1981), classes of products 
having lesser effects on natural enemies began to appear (Fig. 11): 
kaolin clay; juvenile hormone (JH) mimics; inhibitors of chitin bio-
synthesis; mitochondrial electron transport inhibitors (METI); oil 
of cinnamon (Cinnerate); chitin synthesis inhibitors (CSI); and the 
neonicotinoids. These products all appear to have lesser effects on 
natural enemies than the earliest synthetic insecticides and today are 
important components of prebloom programs (Nottingham et al. 
2022b).

Postbloom sprays target eggs, nymphs, and adults of the 
summer generations (Fig. 11). Between the late-1940s and 1970s, 
nonselective insecticides such as the organophosphates, carbamates, 
and pyrethroids arrived for summer use (Westigard and Zwick 1972, 
Westigard et al. 1979). The time course in arrival, use, and replace-
ment of a product was driven by loss of efficacy due to resistance, 
especially in US populations of C. pyricola (Harries and Burts 1965, 
Westigard and Zwick 1972). Resistance of C. pyricola to the organo-
phosphate parathion began within 10 yr of the chemical’s arrival in 
the late-1940s (Burts 1964, Harries and Burts 1965). The loss of 
parathion was only the first in a long series of such events, in which 
a new psyllicide would arrive, be used for a few years, and then 
would be lost to resistance (Burts 1964, Harries and Burts 1965, 
Westigard and Zwick 1972). Cross-resistance was common, in that 
resistance to 1 insecticide was accompanied by resistance to other 
insecticides within the same class (Burts 1964). The loss of parathion 

B

A

Fig. 9. (A) Glistening honeydew in orchard heavily infested with C. pyricola; 
(B) marking of fruit by honeydew and sooty mold.
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and other organophosphates was followed by arrival and then loss 
of the cyclodienes, chlorinated hydrocarbons, and pyrethroids (Burts 
1964, Harries and Burts 1965, Follett et al. 1985, Croft et al. 1989). 
Resistance of C. pyri has been less dramatic than seen for C. pyricola, 
but nonetheless is a problem. Selection assays produced significant 
levels of resistance to organophosphates in French populations of C. 
pyri within ~30 generations (Berrada et al. 1995, Buès et al. 2000). 
Buès et al. (2003) documented increases in resistance by C. pyri to 
the pyrethroid deltametrin that ranged from 31-fold to 135-fold.

Beginning in the 1970s, postbloom control of psyllids began 
shifting to insecticides of higher selectivity (Burts 1981). This shift 
included the arrival of new classes of chemicals such as amitraz, 

an octopamine receptor agonist with activity against nymphs but 
with lesser effects on natural enemies (Souliotis and Moschos 2008). 
Its efficacy in Europe against C. pyri weakened by the early 2000s 
(Schaub et al. 2001). A substitute was the chitin synthesis inhibitor 
diflubenzuron (Westigard 1979, Souliotis and Moschos 2008). 
Product efficacy again declined (Schaub et al. 1996), and the chem-
ical largely has been abandoned in Europe but is being used in the 
US (Fig. 11). The macrocyclic lactone abamectin arrived in the 
1980s (Burts 1985, Berrada et al. 1996) and continues to be used 
in psyllid programs (Fig. 11). A slight drop in efficacy has been seen 
in Spanish and Italian populations of C. pyri (Civolani et al. 2007, 
2010, 2015, Miarnau et al. 2010). A more substantial drop was 

Fig. 10. Two-week captures of male and female C. bidens on yellow sticky cards showing male-biased trap catch (V. Soroker, unpublished data); Israel.

Fig. 11. Important pre- and postbloom insecticides used to manage the pear psyllids. Use of the different products varies regionally and with species of psyllid. 
Frequency of spray applications (typical number of applications per season) also differs substantially among regions (see text).
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observed in Turkey leading to the abandonment of the insecticide (F. 
Erler, pers. comm.). Spirotetramat, an alternative to abamectin, ar-
rived in the early 2000s and continues to be used (Fig. 11). The com-
pound should be rotated with other classes of chemicals to reduce 
chances of resistance (Civolani et al. 2015, Esmaeily et al. 2022). 
Both abamectin and spirotetramat are components of psyllid control 
programs in several growing regions but are in the process of being 
phased out in Europe and will need effective replacements (Civolani 
et al. 2023).

Decades of starts and stops in arrival and replacement of insecti-
cides have led to a wide-ranging choice of insecticides for managing 
the pear psyllids (Fig. 11). Importantly, the newer products consist 
of compounds differing in modes of action, which lowers chances 
that psyllids will develop resistance. The insecticides also are of 
lower-toxicity to natural enemies, which allows for biological con-
trol. Some products are available for both prebloom and postbloom 
intervals, such as pryiproxyfen, the neonicotinoids, cinnamon oil, 
and the CSI or METI (Fig. 11). Dormant oil has been replaced in 
some programs by kaolin clay, which has effects on psyllids like 
those caused by oil (Glenn et al. 1999, Pasqualini et al. 2003, Erler 
and Cetin 2007) but with longer residual life. In some climates, 
fungal pathogens (Beauveria, Metarhizium) can be useful (Puterka 
1999, Erler et al. 2014). Finally, years of advances in oil distillation 
have led to the manufacture of highly refined horticultural oils that 
can be applied during summer with low risk of phytotoxicity (Fig. 
11). These oils provide growers with a postbloom treatment having 
relatively high selectivity.

Biological Control
The pear psyllids have been referred to as “induced” pests in that 
outbreaks may often be caused by grower practices, especially by 
insecticidal destruction of natural enemies (Westigard 1973a, Burts 
1981, 1983, Solomon et al. 1989). A large community of predators 
and parasitoids attack pear psyllids both within their native Old 
World range and in regions where the psyllids have been introduced. 
Taxa show a gradation in how generalized or specialized they are 
ranging from opportunistic generalists such as spiders and earwigs, 
to true bug species that associate primarily with homopterous or 
psyllid prey, and culminating with the psyllid-specific activities of 
some parasitoids. This bewildering diversity of natural enemies has 
led to a very large literature that touches on numerous aspects of 
psyllid biological control. Research has helped identify taxa of im-
portance in pear orchards, while also providing basic biological 
data critical in designing integrated control programs for the pear 
psyllids.

Natural enemies of the pear psyllids.
Overviews of predatory taxa in pear orchards are available for sev-
eral regions including France (Nguyen et al. 1984, Herard 1985, 
1986), Italy (Civolani and Pasqualini 2003), Greece (Santas 1987), 
Spain (Artigues et al. 1996), Israel (Shaltiel and Coll 2004), Turkey 
(Erler 2004), Northern and Central Europe (Solomon et al. 2000, 
Gajski and Pekár 2021), and North America (Westigard and Zwick 
1972, Horton et al. 2002, DuPont and Strohm 2020). Important 
predators include especially the true bugs led by the minute pirate 
bugs (Anthocoridae) and zoophytophagous plant bugs (Miridae) 
(Fig. 12). Several true bug taxa seem to prefer homopterous 
Hemiptera and often are found in association with psyllid prey, 
such as shown by some Anthocoris species (Scutareanu et al. 1999, 
Horton et al. 2004). Taxa less closely associated with psyllids include 
Coccinellidae and Neuroptera, which attack aphids in fruit orchards 

but also feed on pear psyllids. Generalist predators that feed op-
portunistically on pear psyllids are spiders (Araneae) and earwigs 
(Dermaptera). Both groups include effective but underappreciated 
predators of the pear psyllids (van der Blom et al. 1985, Solomon et 
al. 2000, Miliczky and Calkins 2001, Orpet et al. 2019).

Biological research with these taxa in pear orchards is exten-
sive. Studies of phenology, including descriptions of wintering, 
have been conducted in several regions (Herard 1985, Artigues et 
al. 1996, Scutareanu et al. 1999, Horton et al. 2002, Civolani and 
Pasqualini 2003, Horton 2004, Shaltiel and Coll 2004, DuPont and 
Strohm 2020). Phenology data for natural enemies have now made 
their way into psyllid control programs (Nottingham et al. 2022b). 
Laboratory assays have quantified rates at which predators consume 
pear psyllids (Westigard 1973b, Brunner and Burts 1975, Sigsgaard 
2010, Petrakova et al. 2016, Ge et al. 2019), while molecular tools 
have identified predators which feed on psyllids under field condi-
tions (Unruh et al. 2008, Valle et al 2022). Monitoring tools include 
nonselective devices such as beating trays, tree bands, or sticky traps 
(Horton et al. 2002, Jones et al. 2016, Mills et al. 2016b, DuPont 
and Strohm 2020), as well as tools of higher selectivity such as card-
board refuges for earwigs (Orpet et al. 2019). Multiple studies have 
examined the effects of insecticides on natural enemies (Westigard 
1973a, 1973b, Trapman and Blommers 1992, Sauphanor et al. 
1993, Berrada et al. 1996). Today’s assays often examine both acute 
and sublethal effects of toxicants (Amarasekare and Shearer 2013, 
Amarasekare et al. 2016, Mills et al. 2016a). These studies help 
guide insecticide recommendations in integrated programs (Beers et 
al. 2016, Nottingham et al. 2022b).

Lists of parasitoids emerging from pear psyllids are available for 
both Old World and New World regions (Jensen 1957, McMullen 
1966, 1971, Rieux et al. 1990, Cross et al. 1999, Jerinić-Prodanović 
et al. 2019). Three species of Encyrtidae (Hymenoptera) are most 
important: Trechnites insidiosus (Crawford), Prionomitus mitratus 
(Dalman), and Prionomitus tiliaris (Dalman) (Fig. 13). All 3 are 
parasites of nymphal Psylloidea. The adult parasite emerges from 
the mummified late-instar of the nymph (Fig. 13). Pear psyllids 
that are reported as hosts for 1 or more of these parasitoids in-
clude C. pyri, C. pyrisuga, C. pyricola, and C. bidens (Jensen 1957, 
Herard 1986, Guerrieri and Noyes 2009, Jerinić-Prodanović et al. 
2019, Noyes 2019, Tougeron et al. 2021). All 3 parasitoids are 
widespread in the Palaearctic Region (Guerrieri and Noyes 2009, 
Noyes 2019). Each is present in North America as an introduc-
tion or because the species is naturally Holarctic. Observations on 
host use, behavior, hyperparasitoids, and life histories are avail-
able in several publications (Gutierrez 1966, Nguyen and Delvare 
1982, Delvare 1984, Le Goff et al. 2021, Tougeron et al. 2021). 
Trechnites insidiosus largely is restricted to pear psyllid hosts 
but may occasionally parasitize other Cacopsylla (Herard 1986, 
Jerinić-Prodanović et al. 2019). It is a valuable source of biocon-
trol in European and North American orchards (Nguyen et al. 
1984, Rieux et al. 1990, Armand et al. 1991, Unruh et al. 1995, 
Olszak and Jaworska 2003, Tougeron et al. 2021). While para-
sitism of pear psyllids by Prionomitus spp. is at a lower rate than 
that by T. insidiosus (Armand et al. 1991, Olszak and Jaworska 
2003), biologically significant rates have been reported (Nguyen 
et al. 1984, Herard 1985). Both Prionomitus are more general-
ized than T. insidiosus and regularly parasitize psyllids other than 
pear psyllids (Jensen 1957, Nguyen et al. 1984, Zuparko 2015, 
Jerinić-Prodanović et al. 2019, Noyes 2019). Neither Prionomitus 
is common in North American C. pyricola (Unruh et al. 1995), in-
stead preferring other psyllid taxa (Jensen 1957, McMullen 1971, 
Zuparko 2015).
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Conservation and augmentation of natural enemies.
Approaches to conserve or augment natural enemies in orchards in-
clude releases of predators or parasitoids into regions where they 
are absent, mass-release of native predators, use of trees or hedges 
as reservoirs of natural enemies, and replacement of broadly toxic 
insecticides with less harmful chemicals. Releases of natural enemies 
into North America for control of C. pyricola include both para-
sitoids and predators. The parasitoids T. insidiosus and P. mitratus 
were released into western North America on several occasions be-
ginning in the 1960s. The parasites were collected from pear psyllids 
in several parts of the Palaearctic region (Unruh et al. 1995). Both 
parasitoids in fact were present in North America earlier than the re-
leases. Indeed, T. insidiosus was described from specimens collected 
in the eastern US (Crawford 1910), likely having arrived in the US 
on psyllid-infested pear trees from Europe. Records for P. mitratus 
in North America extend as far back as the 1940s (Jensen 1957). 

This generalized parasite of psyllids probably is naturally Holarctic 
(Zuparko 2015). The Old World predator Anthocoris nemoralis 
(Fabricius) was released into orchards of British Columbia and 
Washington in the 1960s and 1970s (McMullen 1971, Unruh et al. 

A

B

C

Fig. 12. Important true bug predators of pear psyllids. (A) Adult and (B) 
immature of Anthocoris; (C) adult Deraeocoris brevis feeding on immature 
C. pyricola.

A

B

C

D

Fig. 13. Two parasitoids (Encyrtidae) of the pear psyllids. (A) Prionomitus sp.; 
(B) adult Trechnites insidiosus; (C) T. insidiosus depositing egg into nymph 
of C. pyricola; (D) developing T. insidiosus in “mummy” of C. pyricola host.
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1995). The predator since has been recovered from several regions 
between British Columbia and southern California (Hagen and 
Dreistadt 1990, Horton et al. 2004, Horton and Lewis 2009). The 
impact of the predator on North American C. pyricola is not known. 
Releases of mass-produced A. nemoralis in Denmark orchards led to 
reductions in densities of C. pyri by 30–40% (Sigsgaard et al. 2006).

Several approaches have been used to examine whether habi-
tats near pear orchards are reservoirs of natural enemies. Regional 
lists show that predators and parasitoids of pear psyllids regularly 
occur on trees, shrubs, and hedgerow plants that host nonpest 
psyllids (Jensen 1957, Nguyen et al. 1984, Horton and Lewis 
2000, Miliczky and Horton 2007). A shortcoming of these lists is 
that they are not proof that natural enemies disperse from these 
habitats into orchards at biologically relevant rates. A study with 
the parasitoid P. mitratus and the pear psyllid C. pyri evaluated 
whether presence of P. mitratus in pear orchards depended upon 
Cacopsylla species other than C. pyri (Nguyen and Delvare 1982). 
Overwintered wasps in spring parasitize nymphs of a univoltine 
hawthorn psyllid on Crataegus (Rosaceae) and the univoltine pear 
psyllid C. pyrisuga on pear due to the unavailability of C. pyri 
nymphs (Fig. 14). Parasitism shifts to a second univoltine haw-
thorn psyllid and to C. pyri in later generations (G1 and G2) of the 
parasitoid as the initial hosts disappear (Fig. 14). The univoltine 
hosts preceding the switch to C. pyri are referred to as “relay 
hosts” by Nguyen and Delvare (1982). Movement by predators 
from nonorchard habitats into orchards has been assessed indir-
ectly by monitoring seasonal fluctuations in predator numbers in 
hedgerows and in nearby orchards. Scutareanu et al. (1999) ana-
lyzed predator (Anthocoris) and psyllid numbers in orchards and 
hedgerows to show that predator counts in orchards increased just 
when densities of immature pear psyllids began to peak, presum-
ably due to movement by Anthocoris from hedgerows. Populations 
of A. nemoralis in Israel build to high densities on psyllid-infested 
hedges of buckthorn (Rhamnus) in March before arriving in C. 
bidens-infested orchards in May (Shaltiel and Coll 2004). Psyllid 
numbers were found to be lower on pear trees near hedges than on 
trees at a distance from hedges.

Conservation of natural enemies in orchards by use of less toxic 
insecticides began decades ago in both Europe and North America 
(Westigard 1973a, Burts 1981, 1983, van der Blom et al. 1985, 
Solomon et al. 1989, Trapman and Blommers 1992). Laboratory as-
says have become more and more sophisticated, to the extent that 
assay data are suitable for use in estimating projected rates of field 
increase or decrease in densities of predators (Amarasekare et al. 
2016, Mills et al. 2016a). This information in turn is helping to de-
velop integrated pest management programs that control psyllids 
with minimal disruption of the natural enemy community (Beers 
et al. 2016, Shearer et al. 2016, Amarasekare and Shearer 2017, 
Nottingham et al. 2022b). Comparisons of psyllid control programs 
across commercial orchards in both Europe and North America have 
shown that substituting selective insecticides and biological control 
for conventional insecticides leads to conservation of natural en-
emies and to psyllid control (DuPont and Strohm 2020, DuPont et 
al. 2021, Sanchez et al. 2022).

Host Plant Resistance and Breeding Programs
Pyrus resistance traits.
All commercially important cultivars of the European pear, P. 
communis, are susceptible to the European pear psyllids C. pyri 
and C. pyricola (Chang 1977, Bell and Stuart 1990, Dondini and 
Sansavini 2012), while Asian species such as P. betulifolia Bunge,  

P. calleryana Decne., and P. ussuriensis Maxim. are resistant 
(Westigard et al. 1970, Quamme 1984, Bell 1991). In contrast, the 
Asian pear psyllid C. chinensis develops poorly on P. communis (Wei 
et al. 2020). Resistance is divided into 2 mechanisms, antixenosis 
and antibiosis (Painter 1951). One or both mechanisms may be pre-
sent in a given resistant cultivar of Pyrus (Bell and Puterka 2004, 
Shaltiel-Harpaz et al. 2014). Antixenosis interferes with host ac-
ceptance, feeding, and egglaying, while antibiosis causes mortality 
of nymphs and delays in development. Mechanisms of antixenosis 
may include differences in tree volatiles of susceptible and resistant 
cultivars (Miller et al. 1989, Yahyaa et al. 2019) and physical traits 
of leaves which interfere with feeding (Xu et al. 2019). Anitbiosis 
effects likely are a product of secondary plant compounds car-
ried in the phloem of resistant Pyrus (Bell 1984, Butt et al. 1988, 
1989, Civolani et al. 2013). For example, Asian cultivars resistant 
to European pear psyllids produce flavone glycosides that are absent 
in the susceptible P. communis (Challice and Williams 1968). Higher 
concentrations of phenolics have been found to predict resistance of 
pear cultivars to C. pyri (Fotirić Akšić et al. 2015).

Breeding programs.
The earliest efforts to breed psyllid resistance into commercial pear 
cultivars began in the 1920s at government laboratories in North 
America where hybrids of Asian and European species were evalu-
ated for resistance to C. pyricola (Nin et al. 2012). East Asian pear 
species are resistant to the European pear psyllids, but small fruit size 
and gritty or coarse texture of the fruit limits their use in breeding 
programs. Thus, while interspecific hybrids of P. communis with 
Asian cultivars are resistant to C. pyricola and C. pyri (Westigard 
et al. 1970, Harris 1973, Quamme 1984, Robert and Raimbault 
2005), the hybrids do not produce marketable fruit. Developing 
pear cultivars with psyllid resistance using these traditional breeding 
methods is laborious and time consuming, partly due to the limited 
understanding of the genetic basis of Pyrus resistance. Resistance to 
psyllids is thought to be quantitatively inherited (Harris and Lamb 
1973), yet resistance often does not transmit well from resistant hy-
brid lines to progeny (Lespinasse et al. 2008, Bell 2013). Resistance 
traits may result from the combined results of several small-effect 
resistance genes or from combined dominance and epistatic effects 
(Pasqualini et al. 2006).

The use of DNA markers in breeding programs greatly increases 
the efficiency of breeding compared to conventional methods. This 
method identifies DNA markers that are linked to genes or to 
Quantitative Trait Loci (QTL) of interest. The markers are then used 
prior to field tests to identify plants carrying the desired genes (De 
Franceschi and Dondini 2019). The first QTL identified for a pear 
psyllid was linked to nymphal antibiosis. This QTL was mapped in 
progeny of a European cultivar crossed with a resistant selection, 
and was validated in subsequent selections or progeny (Dondini et 
al. 2015). QTLs were also mapped to resistance traits of the Asian 
pear P. bretschneideri in crosses with susceptible P. communis 
(Montanari et al. 2013). Complete genomes are also now available 
for P. communis (Chagné et al. 2014) and P. bretschneideri (Wu et 
al. 2013). Availability of DNA markers and knowledge of Pyrus gen-
omes will allow pear breeding programs to develop new pear cul-
tivars with desirable agronomic traits and resistance. Advances in 
biotechnology may also allow resistance genes to be inserted into the 
genomes of commercial cultivars. For example, “Bartlett” pear was 
transformed with the antimicrobial gene D5C1, which confers resist-
ance to fire blight. Survival of C. pyricola was reduced on transgenic 
trees (Puterka et al. 2002).
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A final method for breeding pear cultivars with resistance to 
pear psyllids that also produces marketable fruit is with the use of 
resistant interstock grafted between rootstocks and fruit-bearing 
cultivars. This possibility was investigated in Israel as an approach 
to manage C. bidens. Resistant selections “760” and “701” were 
tested as interstock with the commercial cultivar (“Spadona”) as the 
scion. These interstock grafts produce and export metabolites to the 
tree canopy that appear to confer resistance to C. bidens nymphs 
(Shaltiel-Harpaz et al. 2018).

Acquired resistance.
Acquired resistance in plants is activated upon initial attack by 
arthropod or microbial pests and confers a general defensive mech-
anism which protects plants from subsequent attack. Acquired re-
sistance can be activated artificially by applying chemical defense 
elicitors. Foliar applications of elicitors such as harpins, chitosans, 
and acibenzolar-S-methyl (ASM) have been tested for control of C. 
pyricola (Cooper and Horton 2015, 2017, Orpet et al. 2021) and C. 
pyri (Civolani et al. 2022). Applications of ASM were shown to alter 
probing behavior of psyllid nymphs (Civolani et al. 2022) and to re-
duce nymphal survival and adult oviposition (Cooper and Horton, 
2015, 2017). The protective effects are modest, and the compounds 
are unlikely to be a stand-alone tool for psyllid control. However, 
elicitors such as ASM are used to manage fire blight in pear orchards, 
and the products may secondarily lower psyllid densities.

Cultural Tactics
Other tools not yet mentioned which fit into integrated control 
programs for the pear psyllids include cultural practices that prevent 
fruit damage or that disrupt psyllid behavior. One of the earliest cul-
tural practices to be used against the pear psyllids is management of 

tree vigour (Burts 1981). This tactic remains an important part of 
today’s control programs (Nottingham et al. 2022b). Availability of 
lush pear foliage encourages population growth of psyllids. Fertilizer 
management is used to control tree vigour, while summer pruning is 
used to remove excess vegetative growth (Burts 1981, Nottingham et 
al. 2022b). Summer pruning also opens the tree canopy and allows 
penetration of insecticide sprays (Nottingham et al. 2022b). Another 
decades-old tactic still in place today is “tree washing” to remove 
psyllid honeydew and prevent fruit marking (Brunner and Burts 
1981, Nottingham et al. 2022b). High volumes of water sometimes 
combined with detergents are applied with sprayers or overhead 
sprinklers to remove buildup of honeydew in trees (Nottingham et 
al. 2022b). Finally, under-tree mulches used to assist with weed con-
trol or photosynthesis of the pear tree may also repel psyllids. A re-
flective plastic mulch beneath pear trees leads to lower densities of C. 
pyricola by disrupting colonization of trees by egglaying winterforms 
(Nottingham and Beers 2020, Nottingham et al. 2022a).

Conclusions

Three general conclusions are prompted by this synthesis. First, 
while the most recent taxonomic overviews of the pear psyllids list 
24 known species, much of what we know about the biology of the 
group is concentrated on a much smaller set of species consisting pri-
marily of species having a west Palaearctic origin. Moreover, much 
of the research has focused on 2 European species, C. pyri and C. 
pyricola – the latter now a permanent and damaging component of 
North American pear orchards – and 1 species (C. bidens) found in 
a region encompassing areas of the Mediterranean basin, Eastern 
Europe, Western Asia, and South America. Other than taxonomic 
study, much less is known of the remaining psyllid fauna, with the 

Fig. 14. “Relay” sequence of Cacopsylla hosts used by the parasitoid Prionomitus mitratus in hawthorn (Crataegus) and pear orchards during succeeding 
generations of the parasitoid (southern France); “G” indicates generation number of the parasitoid. Modified from Fig. 2 in Nguyen and Delvare (1982).

D
ow

nloaded from
 https://academ

ic.oup.com
/aesa/article/116/6/331/7281568 by U

niversita di Ferrara user on 28 N
ovem

ber 2023



349Annals of the Entomological Society of America, 2023, Vol. 116, No. 6

possible exception of the East Asia C. chinensis. Consequently, while 
our synthesis is stated to encompass a global overview of the pear 
psyllids, many species within the collection of 24 species have seen 
little or no biological research and consequently have received little 
attention in this review.

Second, taxonomic diversity of the pear psyllids is accompanied 
by biological diversity. Even while developing on a single shared 
genus of plants, species in this assemblage diverge extensively in bio-
logical traits. Interspecific variation is seen in life cycle, host pref-
erences, fecundity, endosymbionts, features of the acoustic mating 
signal, and chemical composition of pheromones. Perhaps the most 
striking difference among species is the seasonal cycle. Three distinct 
types of life cycle can be described: multivoltine species which winter 
in the adult stage as a seasonally distinct form; univoltine species; and 
multivoltine species which winter as an early instar nymph. Some of 
the earliest biological research to be done on any pear psyllid in fact 
was aimed at untangling the confusing multivoltine life cycle and 
seasonal dimorphism of C. pyricola. This study led to the realiza-
tion that C. pyricola was a single, seasonally dimorphic species and 
not (as then thought) 2 separate species (Slingerland 1896). The life 
cycle of C. pyricola stands in sharp contrast to the univoltine cycle 
of C. pyrisuga, in which a single reproductive generation in spring 
is followed by disappearance from the pear host until the following 
spring. Cacopsylla pyrisuga may spend a full 7–8 months of the year 
on plant species other than the Pyrus host. The evolutionary pres-
sures which have led to interspecific divergence in life cycles – or in 
many of the other biological traits mentioned in this review – remain 
to be discovered.

The final general conclusion to be produced by this review is that 
many of the control tools being used against the pear psyllids exist 
because of basic research with these pests. Control programs for the 
pear psyllids in some regions have become truly integrated. A good ex-
ample is the program for C. pyricola developed by Washington State 
University, which combines use of monitoring, phenology models, 
economic thresholds, selective insecticides, cultural and horticultural 
tactics, and biological control to manage the pest (Nottingham et 
al. 2022b). Decades of biological research underpin these tactics. 
Studies of psyllid life cycles, seasonal phenology, and developmental 
thresholds helped produce degree-day based models now being 
used to guide timing of insecticide applications. Phenology and 
biological data for natural enemies are included in the same guide, 
thus allowing growers to manage C. pyricola while also conserving 
natural enemies. Broadly toxic chemicals have been replaced by 
lower-toxicity insecticides such as growth regulators or by behavior-
modifying chemicals such as kaolin clay. Commercialization of these 
products and incorporation into the psyllid control package was 
possible only after extensive research. Cultural and horticultural 
practices to manage the pear psyllids, such as the use of tree washes 
to reduce marking of fruit by honeydew or management of tree vigor 
to slow psyllid population growth, were studied multiple decades 
ago but continue to be part of integrated programs in many regions.

The assemblage of Cacopsylla species on Pyrus likely has been 
the target of more biological research than any other group of 
Psylloidea with the possible exception of the citrus psyllids. This re-
search should continue, both to address shortcomings in our know-
ledge of poorly studied species, but also to search for additional 
understanding of well-studied species leading to new biological 
information and possibly to new and novel management tactics. 
Deficiencies in research are best shown in the relatively poor under-
standing we have of the complex of Asian species, although new 
deficiencies will be added as previously unknown species of pear 
psyllids are discovered in poorly sampled regions of Eurasia or the 

Middle East. Finally, new avenues of research with the pear psyllids 
may unlock new approaches for management. For example, use of 
synthesized acoustic cues to disrupt mating of pests is now being 
examined in crop systems (Mazzoni et al. 2019, Avosani et al. 2022), 
while research on the endosymbionts of phloem-feeding insects may 
one day allow us to manipulate these communities and cause death 
of targeted pests (Rupawate et al. 2023). This synthesis has shown 
that the basic research needed to eventually implement either control 
strategy for the pear psyllids is well underway.
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