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Abstract

The study of the electroencephalogram signals recorded from subjects during an experi-

ence is a way to understand the brain processes that underlie their physical and emotional

involvement. Such signals have the form of time series, and their analysis could benefit from

applying techniques that are specific to this kind of data. Neuroaesthetics, as defined by

Zeki in 1999, is the scientific approach to the study of aesthetic perceptions of art, music, or

any other experience that can give rise to aesthetic judgments, such as liking or disliking a

painting. Starting from a proprietary dataset of 248 trials from 16 subjects exposed to art

paintings, using a real ecological context, this paper analyses the application of a novel sym-

bolic machine learning technique, specifically designed to extract information from unstruc-

tured data and to express it in form of logical rules. Our purpose is to extract qualitative and

quantitative logical rules, to relate the voltage at specific frequencies and in specific elec-

trodes, and that, within the limits of the experiment, may help to understand the brain pro-

cess that drives liking or disliking experiences in human subjects.

Introduction

Neuroaesthetics was defined by Zeki [1] as the scientific approach to the study of the percep-

tion of beauty, that is, the study of liking (to be distinguished from wanting, as in [2]) in a

broad sense. The approaches to neuroaesthetics vary very much in the recent scientific litera-

ture, but they can be fundamentally divided into top-down processes, in which the essence of

beauty undergoes an axiomatic treatment in which the subjective feeling is broken down to its

constituting elements, and bottom-up ones, in which some kind of objective data is analysed

and related to the subjective expression of beauty. While the former is certainly fascinating

from an epistemological point of view (it tries to answer the question of whether beauty can be
defined), and it is, in essence, a philosophical exercise, the latter is a neurophysiological one,

based on real data, systematic, and carried on with modern analysis techniques. Such an

approach had already been suggested as early as the second half of the 19th century (the so-
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called Weber-Fechner Law), as an attempt to create a mathematical relationship between stim-

ulus and perception, although not to quantify beauty, and it is largely the most common one.

Bottom-up strategies aimed to understand the mechanisms of the brain can be broadly clas-

sified into (functional) MRI (magnetic resonance) image processing and interpretation, and

EEG (electroencephalogram) signal processing; in some cases the approaches are combined, or

other brain analysis techniques are adopted. Even focusing on EEG only, the relevant work is

huge. It includes, among other elements: experiments aimed to understand human emotions

(of which liking is just one example, often not considered as a single emotion but as a combi-

nation of several ones [3]); experiments designed with own or public datasets; case studies in

laboratory conditions or real-life situations; approaches focused on qualitative or quantitative

descriptions, in some cases time-related; experiments in which the stimuli vary from images,

to audio, to movies, sometimes computer-generated. Performing a complete review of such a

body of work is beyond the scope of this paper; just the most recent review paper of this field

[4] surveys as much as 102 contributions selected from a pool of 654 potential ones. Such an

high interest in the subject is also witnessed by the availability of several public datasets, which

include SEED, DEAP, MANHOB-HCI, DREAMER, AMIGOS, DECAF, INTERFACES,

among many others (see [5] for a complete list of public datasets). From 1985 to 2020, several

authors have worked, in particular, on the problem of classifying emotions from EEG signals

using statistical/machine learning techniques with approaches that are comparable with ours.

To begin with, Ray and Cole [6] approached the problem of examining the effect of attentional

demand during cognitive and emotional tasks, in a pair of experiments with 18 and 40 sub-

jects, respectively; the experiments were carried out in a clinical context and, in terms of emo-

tions, the focus was on distinguishing between happiness and sadness. In [7] the authors

focused on specific features extracted from 10-electrode EEGs to be correlated with anger, sad-

ness, joy, and relaxation; their experiment involved 5 subjects. Schmidt and Trainor [8] found

that the pattern of asymmetrical frontal EEG activity distinguished valence of the musical

excerpts, in an experiment with 59 subjects, 4-electrode EEG, and music-induced stimulation.

In [9] the authors discussed how the changes in the electrical activity of the human brain

related to distinct emotions, in an experiment with 6 subjects and 63-electrode EEG, focusing

on anger, disgust, fear, happiness, sadness, and surprise, elicited via the exposition of the sub-

jects to movie clips; three of the same authors later focused on signal preprocessing, and

designed a classifier for 5 emotions, that is, disgust, happy, surprise, fear and neutral, from an

experiment with 20 subjects [10]. Only two emotions, instead, were the subject of an experi-

ment by Li and Lu [11], carried out on 10 subjects, stimulated, in a clinical context, by being

exposed to pictures displaying facial expressions; while in this case very high accuracies were

reached, the total number of trials was relatively low. Schaaff and Schultz [12] performed an

experiment with 5 subjects, 4-electrode EEG, with the aim of building a classifier to recognize

positive, neutral, and negative emotions in humans, with relatively low success. In [13] the

authors studied EEG correlates on emotions using features extracted by Gaussian mixtures of

EEG spectrograms; their experiment involved 31 subjects, 8-electrode EEG, two emotions

(positive and negative), and two arousal states (calm and excited); in [14], in a similar experi-

ment with 26 subjects, the performance of a EEG-based emotion recognition system based on

a self-organizing map to identify the boundaries between separable regions were studied. Pet-

rantonakis and Hadjileontiadis [15] proposed a novel emotion evocation and EEG-based fea-

ture extraction technique, combined with higher order crossings analysis, for feature

extraction and robust classification; their experiment involved 16 subjects, and 3-channel

EEG. In [16], instead, the authors propose a methodology for robust classification of EEG bio-

signals into four emotional states; their experiment involved 28 subjects and 19-electrode

EEG, and emotions were elicited with pictures observation. Liu and Sourina [17, 18] worked
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on a real-time fractal dimension based valence level recognition algorithm from EEG signals,

which allows a sort of continuous classification of up to 16 different emotions; their work is

based on a public dataset. Nie, Wang, Shi, and Lu [19] considered the problem of classifying

positive and negative emotions from 62-electrode EEG, stimulated by the action of watching

movie clips from relatively famous, and emotional movies; the high accuracies reached in this

case by using support vector machines is to be considered in the perspective of a very reduced

number of subject (3) and trials (12 per subject). Later on, the same authors considered, the

problem of classifying several types of emotions including amusement, anger, contentment,

disgust, fear, neutral, sadness, and surprise [20], using, again, support vector machines; their

experiment involved 6 subjects, and movies were, once more, used to generate emotions in

laboratory conditions. In [21], Hadjidimitriou and Hadjileontiadis used different feature

extraction approaches and classifiers, and focused on the discrimination between subjects’

EEG responses to self-assessed liked or disliked music, in an experiment with 9 subjects and

14-channel EEG. Jenke, Peer, and Buss proposed a statistical method to select electrodes and

features that separate classes well in the problem of emotion classification; their experiment

was carried on 16 subjects with a 64-channel EEG [22]; at the same conference, Rozgić, Vitala-

devuni, and Prasad addressed single-trial binary classification of emotion dimensions, using a

public EEG dataset [23]. In [24], the authors proposed a deep learning method is proposed to

recognize emotion from raw EEG signals using LSTM neural networks and a public dataset.

Neural networks were also applied to the same problem in [25], with several public and private

datasets, and also in [26], again on a public dataset, as well as in [27].

Several considerations can be drawn from reviewing the literature. First, most of the exist-

ing work on computational neuroaesthetics focuses on artificial, 2D images and 3D shapes

designed with experimental purposes, or movies, and experiments are almost never carried on

in real contexts. Moreover, EEG signals have been analysed with functional machine learning

techniques that do not allow, in general, the interpretation of the resulting models, nor the

extraction of explicit rules, and can only be judged by their statistical performances. The most

common approaches vary from univariate/multivariate inferential and descriptive statistical

approaches, to support vector machines, to neural networks; in some other cases, EEG signals

have been classified with other methods, e.g., hidden Markov models, but not in the case of

emotions. Furthermore, even if liking is one of the labels explicitly present in public datasets

(e.g. DEAP), it has been rarely singled out in the experiments; quickly surveying among the

authors that do mention it [23, 24, 26, 28], we may observe that the average accuracy of classifi-

cation ranges from 60% to 86%, although the peculiarities of the single experiments and their

conditions hardly allow for a definitive comparison. Finally, most of the effort has been

directed to build complete classification models, and only in a few cases to understand, in a

systematic fashion, the role of each electrode placement, frequency, and feature in relation

with the class to be learned. In this paper, we consider data collected during a real-world exper-

iment, analysing the explicit and implicit reactions of participants, using different kinds of sen-

sors, during their visit to an art exhibition. Our data are part of a larger biosignals dataset

recorded to evaluate the participants’ reactions during the observation of paintings, which

included ECG (electrocardiogram), EDA (electrodermal activity), two different tools for EEG

recording, the gaze pattern, the participants’ main characteristics (age, gender, education,

familiarity with art, etc.) and their explicit judgments about paintings. Focusing on the EEG

signal only, in this paper we consider the problem of extracting explicit rules that underly the

electric signals at specific frequencies of specific electrodes, using a new techniques for extrac-

tion of knowledge from time series, based on temporal decision trees and temporal random for-
ests [29, 30]. In particular, we consider the problem of identifying the most relevant sub-group

of electrodes whose signal correlates to the subjective liking experience, the most relevant sub-
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group of frequencies at which the sensation seems to reveal itself, and the most relevant sub-

group of feature functions that allow one to highlight such information, with the aim of

extracting explicit, logical rules that relate time (qualitatively) and power (quantitatively) dur-

ing the experience. We have chosen to focus on the available EEG data only, and, among them,

those gathered with a single type of equipment. While other biosignals, such as EDA, did not

seem to contain relevant information for the task at hand, this is not the case, for example, for

gaze patterns; however, treating gaze data is essentially different in both techniques and

approaches, and requires a dedicated effort.

Our approach is not only novel in this particular area, but also in medical and biosignal

treatment in general, and it allows one to analyse very large quantities of data. Moreover, it

should be observed that the fluctuation between a philosophical, artistic, neurological, techno-

logical or computational viewpoints, just to name a few of the most important one when base-

lining this project, gave us the opportunity to discuss the results taking into account different

knowledge; such an interdisciplinary approach, working with a diverse team right from the

hypothesis stage, contributed to exploit insights and results acquired in disciplinary fields that

would have otherwise remained isolated.

Data origin

The dataset used in this paper has been collected during the exhibition Painting affections:
sacred painting in Ferrara between the ‘500 and the ‘700, set up at the Estense Castle in Ferrara

(Italy) from the 26th of January to the 26th of December 2019 [31, 32]. The original exhibition

included 54 paintings, of which 18 have selected according to some exclusion criteria, to avoid

the risk that people may be distracted when approaching to the observation point (too small

paintings), by details unrelated to the artwork itself (damaged paintings) or by the difficulties

in focusing on single paintings (paintings that are part of a series). The experiment included

two different ways to collect EEG data, to analyse benefit and boundaries of different tools,

procedures and final results. However, in this paper we analyse only the outcomes coming

from subjects wearing a dry electrode EEG cap Waveguard™touch by ANT Neuro in the

64-channel variant during the exhibition. To minimise the influence of movements, the 16

people involved in this particular setting attended to the trial while using a wheelchair pushed

by a researcher. Each experiment produced a single long recording per subject, ranging from

the beginning to the end of the exhibition; therefore all data required a preliminary slicing

operation, based on the actual time at which the subject was standing in front of each painting,

in order to be able to analyse the data related to each specific painting. To better take into

account the strictly personal reactions of people to emotions and the environment, each subject

has been exposed to a blank image (a white wall) for 60 seconds before his/her trial, which con-

sisted of a 60-seconds observation of each of the 18 paintings. Being recorded at a sampling

rate of 512 Hz, each data slice consisted of a time series of 30720 points. Each subject was asked

to express an integer in the range [0, 50] as an expression of their subjective liking score of the

painting, using a Visual Analog Scale (VAS) scale [33]. Since not all subject-painting pairs were

recorded, the resulting dataset is composed of 248 instances, each instance being described by

64 time series (one for each electrode) of 30720 points and labelled by the relative liking score.

Statistically-wise, subjects were analysed by their gender, age, nationality, education level,

and subjective interest in the painting arts. The subjects’ set is composed of 10 males and 6

females with an average age of 32.19±15.81, with a subjective interest in the painting arts of

25.93±7.58 on a scale of [0, 50] (see Fig 1, top). Moreover, 14 subjects (that is, the 87.5%) were

Italian, 1 (6.25%) was Portuguese and 1 (6.25%) was Russian, and the education level was dis-

tributed as follows: in the 62.5% (10 subjects) of the cases, the highest level of education was
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high school diploma, in the 12.5% (2 subjects) was bachelor’s degree, in the 12.5% (2 subjects)

it was master’s degree, and in the remaining 12.5% (2 subjects) cases it was PhD, or other type

of postgraduate (see Fig 1, bottom). In terms of sample size, and other relevant hypothesis on

the distribution of data, no pre-qualifying tests (e.g., power analysis) were performed, as they

are generally unnecessary when data are analyzed with machine learning techniques; this is

particularly relevant in observational studies that require complex preparation and whose sam-

ple size and distribution cannot be easily controlled at design time.

Ethic statement

This study was approved on the 14th of April, 2019, by the Ethics Committee of “Area vasta

Emilia Centro—Regione Emilia Romagna”, (University of Bologna), with reference number

282/2019/Sper/UniFe, and registered on ISRCTN with number 70216542. Data collection has

been performed according to a strict protocol approved by the committee, specifically con-

cerning informed consents and privacy. The NEVArt website [34] and a set of downloadable

documents explained purpose and rules before people completed the participation form. In

particular, we prepared a short summary of the research purposes, development, data process-

ing, as well as a copy of the informed consent, that have been sent by email to participants

when confirming data and time of the experiment and the instruction to participate. The final

informed consent has been signed just before the trial, in paper, to be able to give any further

detail, if needed, before the experiment (and a copy was returned to the participant). The

informed consent (as well the database and the data processing description) has been provided

both in Italian and English language. The research database includes only adults; a small num-

ber of minors have been tested (6 people, between 11 and 17), with a specific written parent

approval, but not included in the dataset. These trials have been provided to give the chance to

kids (3 subjects) to participate with their family group, as well as to our, still minor, trainees

from secondary school (3 subjects).

Fig 1. Distributions of age (top-left), interest in painting arts (top-right), nationality (bottom-left) and education

level (bottom-right) of the subjects.

https://doi.org/10.1371/journal.pone.0287513.g001
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Preprocessing

The raw EEG signals (see an example in Fig 2), originally sampled at 512 Hz were, first, re-

sampled at 104 Hz in order to lower the Nyquist frequency to 52 Hz [35] while removing pos-

sible noisy frequency bands in the high range, and, then, processed with a Short Time Fourier

Transform (STFT), in order to retain both the frequency and time domains. The (0, 52] Hz

spectrum (0 excluded, 52 included) was divided into 13 equally wide bands of frequencies (F1,

. . ., F13), with a resulting width of 4 Hz, as per the result of the initial screening. The STFT

time window size was set to 50 ms with a step time of 20 ms, and the resulting time series per

each trial were 3379 points long. For reference and comparison with existing work, such 13

bands can be grouped into the five standard relevant wave patterns (see Fig 3 for an example):

δ, ranging in 0 − 4 Hz (usually associated with slow-wave sleep), θ, ranging in 4 − 8 Hz (usually

associated with phase 1 and 2 of non-REM sleep and with REM sleep), α, ranging in 8 − 12 Hz

(usually associated with waking state with closed eyes and instants prior to fall asleep), β, rang-

ing in 12 − 32 Hz (usually associated with intense mental activity), and γ, ranging in 32 − 52

Hz (usually associated with states of particular stress). Observe that each Fi (1� i� 13) is obvi-

ously finer than a normal band b 2 {α, β, γ, δ}; the resulting dataset is clearly richer than those

obtained in more classic approaches (e.g., using the four bands directly), but not so rich to gen-

erate learning noise (e.g., using 1 Hz bands). This makes it possible to extract more statistically

reliable models at the expenses of a more computationally demanding extraction phase. Our

information extraction approach being not distribution-dependent and based on simple vari-

ance renders the typical eye blinking and movement noise cancellation unnecessary [36], effec-

tively simplifying the whole procedure; moreover, in this way, we expect to extract a model

that is, at least in principle, robust to eye blinking and neck muscle contraction noise, to be

used in a real environment.

The scores among the dataset, in the range [0, 50], were non-normally distributed

(p = 10−56, with a Kolmogorov-Smirnov normality test). For the purpose of learning, we

treated the resulting problem as a classification one, by discretizing the liking scores into three

categories (dislike, neutral, like). For this data binning step, the three different pairs of thresh-

olds h< 25,� 25i, h< 17,� 34i, and h< 10,� 41i were considered, giving rise to three datasets

(D25, D34, D41) encompassing, respectively, 248 instances (125 dislike versus 123 like), 167

instances (86 dislike versus 81 like), and 91 instances (46 dislike versus 45 like). Binning was

equal-length despite the distribution not being normal, as it still shows a symmetrical behav-

iour withs respect to the median value, as shown in Fig 4.

In order to prepare the datasets for the learning phase, it is necessary to further treat the sig-

nals and drastically reduce the number of points and electrodes that are effectively used. While

the problem of attribute/feature selection is widely known in the literature, treating temporal

Fig 2. Example of a raw EEG signal of a single subject, from a single electrode; the first highlighted area

corresponds to the blank portion of the observation, while the others correspond, each, to the observation of

different paintings (here, only two paintings are shown in the picture).

https://doi.org/10.1371/journal.pone.0287513.g002
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features is not very common. We modelled this classification problem as a multivariate tempo-
ral series classification problem. Naïve symbolic treatment of time series consists of simple fea-

ture extraction for further analysis; however, as suggested in [37, 38], elementary features can

be combined with more elaborate ones. Prior to the knowledge extraction phase, therefore, we

aimed to highlight which electrodes and which measures (i.e., feature functions) are more

prone to have a role in this problem. To this end, we performed a statistical analysis based on

Fig 3. From top to bottom, the intensity of voltage at the band δ, θ, α, β (specifically, the interval of β included in F6),

and γ bands (specifically, the interval of γ included in F11) during the trial of example in Fig 2, after preprocessing. All

graphics are log10-normalized. As before, the first highlighted area corresponds to the blank portion of the observation,

while the others correspond, each, to the observation of different paintings (again, only two paintings are shown in the

picture).

https://doi.org/10.1371/journal.pone.0287513.g003
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the assumption that, when coupled with a given measure, a frequency is more informative if it

displays a higher variance across the instances. In the following, we shall refer to feature as the

triple electrode-frequency (band)-measure, whereas, in particular, a measure is a specific func-

tion applied to a time series (or to an interval of a time series). Among all possible measures

we considered 22 functions generically considered as informative for time series, listed in [37],

plus minimum, maximum, and average, for a total of 25; they are all listed in Table 1. For each

dataset (D25, D34, or D41), we proceeded as follows:

• We applied all measures to the signal at all frequencies from all electrodes, obtaining 13 × 64

× 25 = 20800 (potential) features—in this way a dataset ends up being described, therefore,

by 20800 temporal features.

• We computed the (min-max normalized) variance of each feature across the whole dataset.

• We listed the best electrodes in non-decreasing order of their e-score, that is, the average nor-

malized variance across all frequencies and all measures.

• We selected three sub-groups of electrodes from the best ones (w.r.t. their e-score), of,

respectively, 1, 5, and 10 electrodes each.

• For each given group, we listed the best measures in non-decreasing order of their m-score,
that is, the average normalized variance across all (selected) electrodes and all frequencies.

The result of this process is a selection of pairs electrode-measure that score well across all

frequencies bands, and it is visible in Figs 5–7. In all figures, the right-hand side shows the

Fig 4. Distribution of liking scores.

https://doi.org/10.1371/journal.pone.0287513.g004
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spatial arrangement of the selected electrodes (dark shaded: best electrode; middle shaded:

best 5 electrodes; light shaded: best 10 electrodes), and the left-hand side shows the ordered

listings (top: electrodes; second from the top: best measures in the group of the single best elec-

trode; third from the top: best measures in the group of the 5 best electrodes; bottom: best mea-

sures in the group of the 10 best electrodes).

Selecting specific electrodes (and measures) is a necessary step to proceed to the auto-

matic learning phase; nonetheless, the results of the selection themselves can be interpreted.

As it can be observed, the electrodes that seem to encompass the most information are the

same in all three binnings, which could be interpreted as an indication that the problem is

well-founded. In particular, the best 5 electrodes are always the same (in descending order of

e-score: 4L, 6Z, 2LA, 10R, 4LB), while the second 5 best vary a little from binning to binning.

Similarly, the 4 measures that occur more often in all selections are Z10, EN, FLF, and FMAI;
notably, EN never shows a high variance on electrode 4L, but it emerges as an informative

measure as soon as the other (good) electrodes are taken into consideration. As a final obser-

vation, we can compare the selected electrodes with those that may be affected by potential

noise that has not been cancelled in the preprocessing phase, typically, eye movements [39]

and neck muscle contractions [40]. As a result of such a comparison, it is immediate to see

that, as expected, the electrodes that have been chosen are not known to be influenced by

this kind of noise.

Table 1. 25 statistical measures for time series (including 22 measures from [37]).

measure symbol

minimum MIN
maximum MAX
average AVG
mode of z-scored distribution (5-bin histogram) Z5

mode of z-scored distribution (10-bin histogram) Z10

longest period of consecutive values above the mean C
time intervals between successive extreme events above the mean A
time intervals between successive extreme events below the mean B
first 1/e crossing of autocorrelation function FC
first minimum of autocorrelation function FM
tot. power in lowest 1/5 of frequencies in the Fourier power spectrum TP
centroid of the Fourier power spectrum CE
mean error from rolling 3-sample mean forecasting ME

time-reversibility statistic hðxtþ1� xt
Þ

3
it TR

automutual information (m = 2, τ = 5) AI
first minimum of the automutual information function FMAI
proportion of successive differences exceeding 0.04σ PD
longest period of successive incremental decreases LP
Entropy of two successive letters in equiprobable 3-letter symbolization EN
change in correlation length after iterative differencing CC
exponential fit to successive distances in 2-d embedding space EF
ratio of slower timescale fluctuations that scale with DFA (50% sampling) FDFA
ratio of slower timescale fluctuations that scale with linearly rescaled range fits FLF
trace of covariance of transition matrix between symbols in 3-letter alphabet TC
periodicity measure PM

https://doi.org/10.1371/journal.pone.0287513.t001

PLOS ONE Towards an objective theory of subjective liking

PLOS ONE | https://doi.org/10.1371/journal.pone.0287513 June 23, 2023 9 / 20

https://doi.org/10.1371/journal.pone.0287513.t001
https://doi.org/10.1371/journal.pone.0287513


Fig 5. Selected electrodes and measures for the dataset D25 corresponding to the 25-25 binning. On the right-hand

side, their spatial distribution (from dark to light: best one, best five, best ten), and on the left-hand side, top, their

ordering. On the left-hand side, also, ordering of the best measures with the different selections (from line 2 to bottom:

with the best ten measures, the best five, and with the best electrode only.)

https://doi.org/10.1371/journal.pone.0287513.g005

Fig 6. Selected electrodes and measures for the dataset D34 corresponding to the 17-34 binning. On the right-hand

side, their spatial distribution (from dark to light: best one, best five, best ten), and on the left-hand side, top, their

ordering. On the left-hand side, also, ordering of the best measures with the different selections (from line 2 to bottom:

with the best ten measures, the best five, and with the best electrode only.)

https://doi.org/10.1371/journal.pone.0287513.g006
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Learning and classification

Time series classification can be approached in several ways within the context of machine

learning. Methods for classifying time series can be roughly separated into symbolic and func-
tional (see, among others, [41–43]). Symbolic methods aim to extract a logical characterization

of the classes in terms of the behaviour of the series, while functional ones approach the classi-

fication problem by extracting a mathematical function of the series. Time series classification

methods can also be separated into native or feature-based (see, e.g., [44, 45]). Native methods

consider time series as they are, without performing any modification of the signals. Feature-

based method, on the other hand, focus on extracting statistically interesting measures of the

signals and use those for the classification phase. Feature-based methods are far more com-

mon, and they can be symbolic or functional; their major drawback is the lack of interpretabil-

ity of the results in the functional case, and the low predictive capabilities in the symbolic one.

Native methods are scarcer, and the most common ones among them, so-called distance-based
methods (see [46, 47]), despite their general good behaviour in terms of performances, do not

offer a real grasp of the underlying problem.

In [30, 48], a new class of symbolic, native time series classification methods was proposed.

Despite their short history, temporal decision trees, and their ensemble counterpart temporal
decision forests, showed a good compromise between interpretability and performances. The

key points that define temporal decision trees are:

• They follow the general pattern and schema of conventional decision trees, in which deci-

sions are taken on a dataset in order to maximize the amount of information gain in a greedy

fashion, starting from the original training dataset and obtaining, at each step, smaller, and

more informative subsets. When the dataset associated with a node is too small, or too pure

in terms of class, it is converted into a leaf, and labelled with the majority class (generating,

Fig 7. Selected electrodes and measures for the dataset D41 corresponding to the 10-41 binning. On the right-hand

side, their spatial distribution (from dark to light: best one, best five, best ten), and on the left-hand side, top, their

ordering. On the left-hand side, also, ordering of the best measures with the different selections (from line 2 to bottom:

with the best ten measures, the best five, and with the best electrode only.)

https://doi.org/10.1371/journal.pone.0287513.g007
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as in the classical case, a certain amount of misclassifications). Classical techniques, up to

and including pre- and post-pruning, can be applied, at least in a limited form, to non-tempo-

ral and temporal decision trees alike.

• Unlike conventional decision trees, decisions are relativized to intervals of the time series.

So, while conventional decision trees treat times series by extracting features from them, and

then taking decisions on such features, temporal decision trees take decisions directly on

time series, in a native way. Consider, for example, the average; while a conventional deci-

sion tree may separate the dataset using the fact that the average of a specific variable on the

whole time period exceeds a given threshold value (e.g. if the average value of a variable is
more than that value, then. . .), a temporal decision tree may do so using the existence of an

interval in which the average of a specific variable exceeds the same threshold value (e.g. if
the average value of a variable is more than that value between the instants x and y, then. . .).

• Like conventional decision trees, a temporal decision tree has a clear logical interpretation,

but makes use of a more complex logic than propositional logic, which allows one to express

properties over intervals, and their relations. There are thirteen relations between two inter-

vals, known as Allen’s relations (see Fig 8, in which we show only the six direct relations of

the type hXi; their inverses, denoted with hXi, can be obtained by switching the roles of each

interval, and the thirteenth, equals, is denoted h=i), and a temporal decision tree is able to

learn interval patterns which we can formalize using suitable symbols to denote Allen’s rela-

tions (see Fig 8, first column).

In [30, 48] it was shown that temporal decision trees perform, in general, better than their

non-temporal counterparts, and, while retaining a very high level of interpretability, they are

still able to extract classification models that are comparable with those extracted by non-inter-

pretable approaches.

Experiments and results

For these experiments, temporal decision trees in their random forest generalization were

used, and the models were trained on the selected electrodes and measures, using all frequency

bands F1, . . ., F13 (from δ to γ), in different combinations. In all experiments, we set the num-

ber of trees to 100. Since the three datasets are different in terms of number of instances, in

order to ensure comparability of the results we ran all the experiments in the so-called leave-p-
out cross-validation [49], with p = 10; the leave-p-out method consists in training the model

leaving p instances as validation set and repeating this process over all the possible

Fig 8. Allen’s interval relations and their notation in temporal decision trees.

https://doi.org/10.1371/journal.pone.0287513.g008
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combination of p instances with different random seeds. This cross-validation method is

mostly adopted when dealing with small datasets; to maintain consistency across our experi-

ments we limited ourselves to 10 repetions out of all possible combinations; leave-p-out gener-

alizes the more standard cross-validation method and ensure the comparability of results

between datasets of very different cardinalities, and choosing p = 10 is mostly accepted in the

literature in terms of number of folds [50].

For each of the three datasets, we explored 4 different configurations of frequency bands, (i)
all the 13 frequency bands (ii) only those corresponding to β, (iii) only those corresponding to

γ and (iv) only those corresponding to β and γ. From each of the signals recorded by the

selected electrodes, interval temporal random forests were trained on the 5 best measures; we

performed three different groups of experiments, using the first 10, 5 and the single best elec-

trode(s), as explained in the previous section. As a consequence, we have a total of 36 experi-

ments composed of 10 seeds each. In Table 2, we show a summary of the validation

performances; for each experiment, the table reports the average and standard deviation of

four performance metrics, namely, the overall accuracy (the fraction of correctly classified

instances), the average accuracy (the average between sensitivity and specificity), the sensitivity

(the fraction of likes that were correctly classified), and the specificity (the fraction of dislikes

that were correctly classified); our datasets not being perfectly balanced makes the average

accuracy slightly more informative than the overall accuracy, the latter being, however, a more

standard metric, usually preferred in terms of comparison among different experiments. Tem-

poral decision trees and random forests, as their non-temporal counterparts, are knowingly

greedy algorithms that return, in general, sub-optimal models; to ensure a deeper exploration

of the solution space, we also run all experiments in the same conditions, but selecting only the

best measure (instead of the best 5 ones); the results of this version of the experiments are

shown in Table 3.

Upon observing Table 2, a few observations can be made. Varying the dataset from D25 to

D34, and then to D41, one observes how the validation accuracy tends to improve, which shows

that, as expected, training a model with clearer like/dislike instances (that is, instances with

more extreme grades) improves the ability of the model itself to pick up the underlying tempo-

ral patterns; the same happens when varying the number of electrodes from 1 to 5, and, then,

to 10, although not as clearly. Another general observation is that all the trained models tend

Table 2. Results of the experiments in the original conditions; all values are expressed in percentage points.

nelectrodes = 1 nelectrodes = 5 nelectrodes = 10

acc avg − acc sens spec acc avg − acc sens spec acc avg − acc sens spec
D25 all 52 ± 19 53 ± 19 37 ± 21 66 ± 26 63 ± 16 62 ± 19 48 ± 22 76 ± 21 66 ± 11 68 ± 10 68 ± 17 69 ± 17

β 70 ± 15 67 ± 17 53 ± 24 82 ± 14 56 ± 15 55 ± 16 54 ± 18 56 ± 25 60 ± 17 59 ± 18 52 ± 26 66 ± 19

γ 59 ± 15 58 ± 17 46 ± 26 71 ± 15 64 ± 14 64 ± 16 60 ± 25 68 ± 19 56 ± 13 57 ± 15 49 ± 18 65 ± 19

β + γ 63 ± 20 65 ± 20 50 ± 23 79 ± 30 60 ± 14 61 ± 14 56 ± 21 65 ± 21 66 ± 17 65 ± 20 58 ± 33 72 ± 19

D34 all 58 ± 12 62 ± 12 44 ± 17 80 ± 19 63 ± 19 62 ± 18 51 ± 28 72 ± 19 59 ± 17 61 ± 19 50 ± 30 71 ± 12

β 66 ± 14 66 ± 14 53 ± 16 80 ± 20 65 ± 12 67 ± 10 51 ± 15 83 ± 13 65 ± 16 67 ± 16 55 ± 20 80 ± 19

γ 67 ± 13 68 ± 9 56 ± 23 80 ± 18 62 ± 10 61 ± 8 53 ± 19 70 ± 16 60 ± 11 60 ± 13 64 ± 13 56 ± 21

β + γ 66 ± 10 65 ± 10 47 ± 18 82 ± 20 66 ± 17 69 ± 15 63 ± 24 74 ± 22 57 ± 16 57 ± 16 48 ± 23 66 ± 20

D41 all 74 ± 13 75 ± 9 57 ± 18 92 ± 10 71 ± 9 70 ± 11 57 ± 25 83 ± 14 76 ± 10 80 ± 7 72 ± 16 89 ± 15

β 76 ± 13 82 ± 9 64 ± 18 100 ± 2 71 ± 13 73 ± 14 64 ± 15 83 ± 19 77 ± 11 79 ± 11 69 ± 17 89 ± 13

γ 77 ± 12 78 ± 12 71 ± 12 85 ± 15 74 ± 6 76 ± 7 68 ± 11 83 ± 14 72 ± 11 68 ± 15 59 ± 26 78 ± 19

β + γ 78 ± 9 81 ± 9 70 ± 14 92 ± 10 69 ± 13 68 ± 12 61 ± 17 75 ± 12 78 ± 11 78 ± 11 66 ± 17 89 ± 12

https://doi.org/10.1371/journal.pone.0287513.t002
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to be more specific than sensitive, that is, the models have a greater capacity to distinguish a

dislike than a like. Moreover, focusing on the frequencies β and γ (and their combination)

tends to improve the performance, with respect to when all frequencies are used. Thus, the

best result in terms of average accuracy corresponds to the case of the model learned with the

frequencies within β + γ on D41, with a value of 78%, with a specificity of 89%, which means

that it correctly recognizes almost 9 dislikes out of 10 while retaining a sensitivity of 66%. We

can also observe how the difference between D25 and D34 tends to be small, which may suggest

how the subjects are unclear in their own judgments when the judgment itself is not extreme.

Perhaps unexpectedly, using only one measure instead of five has a positive effect on the per-

formances of the models, as it can be seen in Table 3. While all the above considerations

remain valid, one observes that the models extracted from D41, using 10 electrodes, show very

good performances across all frequency bands, and in the case of β + γ it reaches an average

accuracy of 81%, with a good balance between specificity (86%) and sensitivity (75%). As we

have seen, only a very few works in the recent literature addressed the problem of identifying

the areas of the brain, and the frequencies, in which a certain experience seems to manifest

itself; in most cases the electrodes are chosen on the basis of the previous neurophysiological

literature, and the signals are separated in well-known bands, as opposed to our approach in

which important electrodes and measures are identified from the data, and frequencies are

explored with finer granularity. Concerning the accuracy with which the liking experience can

be recognized by a model, it is, again, very hard to compare the results of very different experi-

ments; it could be said, however, that our results (up to 81% of average accuracy, as we have

seen) are very much comparable with the accuracies that emerges across the literature that

mentions addressing liking directly (that is, 60%—86%), with two important caveats: our

experiment was carried on in a real environment, and our model is interpretable. As a final

experiment, we considered D41, in the cases 10, 5, and 1 electrode(s), with the best measure

only, and we learned a classification model from such data after having shuffled the labels; we

run such process 5 times with 5 different random seeds. As expected, the accuracies have low-

ered and plateaued around 45%, which, in a balanced setting, corresponds to a random model

with zero extracted knowledge. This confirms the robustness of our previous results.

Extracting patterns from biosignals, such as an EEG, is a task that belongs to the machine

learning domain. As we have already recalled, however, in EEG and MRI pattern and

Table 3. Results of the experiments after selecting only the best measure; all values are expressed in percentage points.

nelectrodes = 1 nelectrodes = 5 nelectrodes = 10

acc avg − acc sens spec acc avg − acc sens spec acc avg − acc sens spec
D25 all 53 ± 21 55 ± 20 39 ± 23 68 ± 27 59 ± 9 58 ± 11 48 ± 19 68 ± 19 57 ± 13 61 ± 13 58 ± 22 64 ± 23

β 70 ± 14 67 ± 17 54 ± 25 80 ± 14 57 ± 19 55 ± 20 52 ± 24 59 ± 28 53 ± 14 53 ± 16 47 ± 25 60 ± 19

γ 61 ± 16 60 ± 17 46 ± 25 73 ± 17 64 ± 16 64 ± 19 59 ± 31 69 ± 24 54 ± 11 55 ± 13 49 ± 18 61 ± 17

β + γ 66 ± 22 66 ± 21 54 ± 26 78 ± 30 58 ± 14 58 ± 13 55 ± 16 61 ± 21 62 ± 16 62 ± 20 52 ± 37 72 ± 20

D34 all 61 ± 12 64 ± 11 45 ± 18 83 ± 16 64 ± 23 65 ± 23 57 ± 31 73 ± 22 61 ± 18 62 ± 19 57 ± 21 67 ± 22

β 67 ± 14 68 ± 15 52 ± 16 85 ± 17 66 ± 15 67 ± 14 54 ± 17 80 ± 14 68 ± 14 70 ± 14 60 ± 15 80 ± 18

γ 66 ± 13 67 ± 9 54 ± 24 80 ± 13 62 ± 9 61 ± 8 53 ± 15 68 ± 21 64 ± 12 65 ± 12 64 ± 19 67 ± 14

β + γ 66 ± 9 64 ± 9 48 ± 19 80 ± 19 67 ± 16 68 ± 13 64 ± 23 73 ± 14 63 ± 17 63 ± 16 54 ± 26 72 ± 15

D41 all 73 ± 15 73 ± 12 57 ± 18 90 ± 11 76 ± 8 74 ± 12 69 ± 28 79 ± 16 77 ± 10 82 ± 6 72 ± 15 92 ± 15

β 76 ± 13 82 ± 9 64 ± 18 100 ± 0 77 ± 13 78 ± 14 77 ± 15 80 ± 19 77 ± 13 78 ± 14 71 ± 21 85 ± 13

γ 75 ± 11 74 ± 11 71 ± 12 77 ± 17 79 ± 7 79 ± 9 78 ± 19 81 ± 14 76 ± 10 73 ± 15 67 ± 25 78 ± 22

β + γ 76 ± 11 79 ± 12 70 ± 14 88 ± 16 70 ± 14 67 ± 13 64 ± 19 70 ± 18 81 ± 12 81 ± 13 75 ± 16 86 ± 15

https://doi.org/10.1371/journal.pone.0287513.t003
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knowledge extraction the recent literature focused on functional machine learning techniques,

and, in most cases, neural networks. The most relevant drawback of a functional learning

schema is that the extracted model can only be evaluated from a statistical point of view. Clas-

sic symbolic learning techniques, such as decision trees or rule-based classification has never

been a serious alternative for this particular task, due to their lack of expressive power. As it

happened in other, very different contexts such as COVID-19 diagnosis [48] and land cover

classification [51], temporal (and spatial) decision trees and forests fill, to some extent, this

gap, being able to extract complex, but explicit patterns from data. Building on the same idea,

therefore, we can now extract explicit trees from the models obtained as a result of our experi-

ment, and discuss them from the point of view of working toward understanding how the

EEG signal behaves in subjects in our case. The tree shown in Fig 9 has been learned from D41,

using 10 electrodes, the bands in the γ spectrum only, and the best 5 measures; its random for-

est counterpart, as per Table 2, shows 72% of accuracy, on average. This particular tree has,

however, 100% validation accuracy, and it reaches such a performance with only five nodes, of

which, three are leaves. From it, one can easily extract two rules:

(
hLiðZ10ð4LDF10

Þ � 0:5 ^ ½L�ðZ10ð5RF11
Þ < 0:81Þ ) like

½L�ðZ10ð4LDF10
Þ < 0:5 _ hLiðZ10ð5RF11

Þ � 0:81Þ ) dislike:

Although interpreting such a rule system from a neurobiological point of view may be mis-

leading, one can observe that, as per this model, the sensation of like is witnessed by the pres-

ence of an interval of time (sometimes during the observation) in which the most frequent

value of amplitude of voltage at the frequency F10, having discretized the possible values in 10

bins, is greater than 0.5 in the electrode 4LD, while it is never the case that such value is greater

than 0.81 in the electrode 5R at the frequency F11. In the same way the model seems to suggest

that if the most frequent value of amplitude of voltage at the frequency F10 in the electrode

4LD is always less than 0.5 or it reaches a peak greater than 0.81 in the electrode 5R at the

Fig 9. A temporal decision tree from the model extracted with the best 5 measures.

https://doi.org/10.1371/journal.pone.0287513.g009
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frequency F11 sometimes during the observation, the subject should be experimenting a feeling

of dislike. As one may see, explicit models such as those extracted by temporal decision trees

and forests are qualitative in temporal terms (for example there is no indication on the length

of such spikes) but quantitative in event terms. Such an analysis is emblematic of the difference

between functional and symbolic models; in the former case, the statistical value is the only

indication of the performance of a model, while in the latter case models can be inspected.

Even in an ideal situation such as the one under analysis, with 100% validation accuracy, how-

ever, precise rules such as the above ones should be taken with precaution, and the experi-

ments should be repeated in different conditions. For comparison, a similar exercise can be

done for models extracted using only the best measure. In particular, in Fig 10, we show a tree

learned, again, from D41 using 10 electrodes; this time, however, we have chosen a tree learned

using bands in the β+ γ spectrum, to be compared, therefore, with a random forest model with

Fig 10. A temporal decision tree from the model extracted with the single best measure.

https://doi.org/10.1371/journal.pone.0287513.g010
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81% of accuracy. The tree alone shows, once more, 100% validation accuracy, but, this time,

patterns are temporally more complex; the most important electrode is still 4LD, over which

the first decision is taken, while the other are, 5Z, 6L, and 5LB.

It should be noticed, finally, that using symbolic models such as temporal decision trees has

an unparalleled computation advantage. As a matter of fact, after the (offline) learning phase,

models are, as shown above, simply sets of rules. As such, they can be implemented in a very

simple way. All pre-processing steps, including Fourier transforms, can be efficiently imple-

mented, which contributes to obtain a potentially online tool that provides a real-time, nearly-

instantaneous classification. Our post-hoc analysis, specifically, the after-shuffling model

learning, shows that, as expected, our models seem to be robust against potential noises of a

real environment, such as eye movements and neck muscle contractions.

Conclusions

In this paper we applied a new methodology to extract knowledge from EEG signals, in order

to study a problem of neuroaesthetics. In a sense, we tried to investigate and make clear a pos-

sible correlation between EEG signal and the experience of liking an art painting, within the

limits of technical appliances. Our data consisted of the EEG recordings of subjects exposed to

art paintings, and we analysed them to extract rules that allows one to establish if the subject

liked, or disliked, the painting he/she was seeing. The more general problem of emotion recog-

nition from the EEG recording of a subject has been widely debated in the recent literature.

While our results must be considered only preliminary, they constitute a first step towards

using a new generation of knowledge extraction methods, by means of which one trades, in a

limited way, some degree of performance of a prediction model (i.e., reliability of the predic-

tion) to obtain, again in a limited way, explicit knowledge. Our results, however, show perfor-

mances that are comparable with the existing literature, and our methodology is able to

provide, in a systematic fashion, several useful suggestions towards data understanding,

including the importance of every electrode, the relevance of the exact frequency at which the

information is carried, and the most informative measures that should be applied to the signal

for such information to emerge. If, on the one side, comparing our results with existing ones

may not be very informative, considering the very different underlying conditions, on the

other side they can be seen as one step forward towards synthesizing a theory of subjective lik-

ing. While modal symbolic learning is still at its infancy, it is showing the ability to pick up

complex patterns from data of very different origin; applying it, in its temporal version, to bio-

signals such as EEG, allows one to deal with large amount of data that emerge from a limited

amount of trials, which is not only the most typical situation in neurophysiology, but it is also

the most effective way to extract all possible information from the data themselves.

In terms of future work, observe that this extraction and analysis technique for EEG signals,

applied here in the neuroaesthetic domain, may be feasible for other clinical research topics,

for example, to evaluate the functional response and efficacy to pharmacological therapies or

to carry out a prospective analysis of patients with cognitive deficits or for monitoring alter-

ations of consciousness, both for diagnostic and prognostic purposes, in states of coma, vegeta-

tive state, and/or with minimally conscious state (see, e.g., [52]), in which it is important to

have a diagnostic picture and a prognostic evaluation as reliable as possible. Moreover, the

idea of employing an algorithm that interprets the like/dislike level of a subject when observing

artwork may be used to explore further issues by other researchers in different disciplines. For

example, it could be applied in the field of the so-called everyday aesthetics (e.g., observing a

landscape, an animal, an architectural object), and, even more, in epistemological cognitive

disciplines (e.g., psychiatry, psychology), and, more in general, in the biological/physiosophical
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sphere in which the sense of beauty falls, given that aesthetic pleasure is the very essence of

knowledge, a bridge between visual perception and subjective/objective experience of the out-

side world (according to the theory of structural coupling of Maturana and Varela [53]).
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