Diversity techniques play a key role in modern wire- less systems, whose design benefits from a clear understanding of how these techniques affect system performance. To this aim we propose a simple class of bounds, whose parameters are optimized, on the symbol error probability (SEP) for detection of arbitrary two-dimensional signaling constellations with diversity in the presence of non-ideal channel estimation. Unlike known bounds, the optimized simple bounds are tight for all signal- to-noise ratios (SNRs) of interest. In addition, these bounds are easily invertible, which enables us to obtain bounds on the symbol error outage (SEO) and SNR penalty. As example applications for digital mobile radio, we consider the SEO in log-normal shadowing and the SNR penalty for both maximal ratio diversity, in the case of unequal branch power profile, and subset diversity, in the case of equal branch power profile, with non-ideal channel estimation. The reported lower and upper bounds are extremely tight, that is, within a fraction of a dB from each other.

Optimized Simple Bounds for Diversity Systems

CONTI, Andrea;
2009

Abstract

Diversity techniques play a key role in modern wire- less systems, whose design benefits from a clear understanding of how these techniques affect system performance. To this aim we propose a simple class of bounds, whose parameters are optimized, on the symbol error probability (SEP) for detection of arbitrary two-dimensional signaling constellations with diversity in the presence of non-ideal channel estimation. Unlike known bounds, the optimized simple bounds are tight for all signal- to-noise ratios (SNRs) of interest. In addition, these bounds are easily invertible, which enables us to obtain bounds on the symbol error outage (SEO) and SNR penalty. As example applications for digital mobile radio, we consider the SEO in log-normal shadowing and the SNR penalty for both maximal ratio diversity, in the case of unequal branch power profile, and subset diversity, in the case of equal branch power profile, with non-ideal channel estimation. The reported lower and upper bounds are extremely tight, that is, within a fraction of a dB from each other.
2009
Conti, Andrea; Gifford, W.; Win, M. Z.; Chiani, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/534095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 62
social impact