Localization systems based on ultrawide bandwidth (UWB) technology have been recently considered for indoor environments, due to the property of UWB signals to resolve multipath and penetrate obstacles. However, line-of-sight (LoS) blockage and excess propagation delay affect ranging measurements thus drastically reducing the localization accuracy. In this paper, we first characterize and derive models for the range estimation error and the excess delay based on measured data from real ranging devices. These models are used in various multilateration algorithms to determine the position of the target. Using measurements in a real indoor scenario, we investigate how the localization accuracy is affected by the number of beacons and by the availability of priori information about the environment and network geometry. We also examine the case where multiple targets cooperate by measuring ranges not only from the beacons but also from each other. An iterative multilateration algorithm that incorporates information gathered through cooperation is then proposed with the purpose of improving the localization accuracy. Using numerical results, we demonstrate the impact of cooperation on the localization accuracy.

The Effect of Cooperation on Localization Systems Using UWB Experimental Data

CONTI, Andrea;
2008

Abstract

Localization systems based on ultrawide bandwidth (UWB) technology have been recently considered for indoor environments, due to the property of UWB signals to resolve multipath and penetrate obstacles. However, line-of-sight (LoS) blockage and excess propagation delay affect ranging measurements thus drastically reducing the localization accuracy. In this paper, we first characterize and derive models for the range estimation error and the excess delay based on measured data from real ranging devices. These models are used in various multilateration algorithms to determine the position of the target. Using measurements in a real indoor scenario, we investigate how the localization accuracy is affected by the number of beacons and by the availability of priori information about the environment and network geometry. We also examine the case where multiple targets cooperate by measuring ranges not only from the beacons but also from each other. An iterative multilateration algorithm that incorporates information gathered through cooperation is then proposed with the purpose of improving the localization accuracy. Using numerical results, we demonstrate the impact of cooperation on the localization accuracy.
2008
Dardari, D.; Conti, Andrea; Lien, J.; Win, M. Z.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/529906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 43
social impact