The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is a novel member of the opioid receptor family with little affinity for traditional opioids. This receptor and its endogenous ligand, N/OFQ, are widely distributed in the brain and are implicated in many physiological functions including pain regulation. [(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-102) is a newly developed peptide agonist of NOP receptors. In this study, we quantitatively investigated the effect of UFP-102 at native NOP receptors of the ventrolateral periaqueductal gray (PAG), a crucial midbrain area involved in pain regulation and enriched with NOP receptors, using blind patch-clamp whole-cell recording technique in rat brain slices. UFP-102, like N/OFQ, induced an outward current in ventrolateral PAG neurons and increased the membrane current elicited by a hyperpolarization ramp from -60 to -140 mV. The current induced by UFP-102 was characterized with inward rectification and had a reversal potential near the equilibrium potential of K(+) ions, indicating that UFP-102 activates G-protein coupled inwardly rectifying K(+) channels. The effect of UFP-102 was concentration-dependent with the maximal effect similar to that of N/OFQ. The EC(50) value was 11+/-2 nM, which is 5 fold lower than that of N/OFQ. The effect of UFP-102 was not affected by naloxone while competitively antagonized by UFP-101 ([Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2)), a potent NOP receptor antagonist, with a pA(2) value of 6.7. These results suggest that UFP-102 is a full agonist at the postsynaptic NOP receptors of the midbrain of rats and is 5 fold more potent than N/OFQ.

Quantitative study of [(pF)Phe(4),Arg(14),Lys(15)]nociceptin/orphanin FQ-NH(2) (UFP-102) at NOP receptors in rat periaqueductal gray slices.

GUERRINI, Remo;CALO', Girolamo;
2008

Abstract

The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is a novel member of the opioid receptor family with little affinity for traditional opioids. This receptor and its endogenous ligand, N/OFQ, are widely distributed in the brain and are implicated in many physiological functions including pain regulation. [(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-102) is a newly developed peptide agonist of NOP receptors. In this study, we quantitatively investigated the effect of UFP-102 at native NOP receptors of the ventrolateral periaqueductal gray (PAG), a crucial midbrain area involved in pain regulation and enriched with NOP receptors, using blind patch-clamp whole-cell recording technique in rat brain slices. UFP-102, like N/OFQ, induced an outward current in ventrolateral PAG neurons and increased the membrane current elicited by a hyperpolarization ramp from -60 to -140 mV. The current induced by UFP-102 was characterized with inward rectification and had a reversal potential near the equilibrium potential of K(+) ions, indicating that UFP-102 activates G-protein coupled inwardly rectifying K(+) channels. The effect of UFP-102 was concentration-dependent with the maximal effect similar to that of N/OFQ. The EC(50) value was 11+/-2 nM, which is 5 fold lower than that of N/OFQ. The effect of UFP-102 was not affected by naloxone while competitively antagonized by UFP-101 ([Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2)), a potent NOP receptor antagonist, with a pA(2) value of 6.7. These results suggest that UFP-102 is a full agonist at the postsynaptic NOP receptors of the midbrain of rats and is 5 fold more potent than N/OFQ.
2008
Kuo, Cj; Liao, Yy; Guerrini, Remo; Calo', Girolamo; Chiou, L. C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/523190
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact