Elucidation of the involvement of protein kinase C subtypes in several diseases is an important challenge for the future development of new drug targets. We previously identified the PKI55 protein, which acts as a protein kinase C modulator, establishing a feedback loop of inhibition. The PKI55 protein is able to penetrate the cell membrane of activated human T-lymphocytes and to inhibit the activity of a, b1 and b2 protein kinase C isoforms. The present study aimed to identify the minimal amino acid sequence of PKI55 that is able to inhibit the enzyme activity of protein kinase C. Peptides derived from both C- and N-terminal sequences were synthesized and initially assayed in rat brain protein kinase C to identify which part of the entire protein maintained the in vitro effects described for PKI55, and then the active peptides were tested on the isoforms a, b1, b2, c, d, e and f to identify their specific inhibition properties. Specific protein kinase C isoforms have been associated with the activation of specific signal transduction pathways involved in inflammatory responses. Thus, the potential therapeutic role of the selected peptides has been studied in polymorphonuclear leukocytes activated by the methyl ester derivative of the hydrophobic N-formyl tripeptide for-Met-Leu-Phe-OH to evaluate their ability to modulate chemotaxis, superoxide anion production and lysozyme release. These studies have shown that only chemotactic function is significantly inhibited by these peptides, whereas superoxide anion production and lysozyme release remain unaffected. Western blotting experiments also demonstrated a selective reduction in the levels of the protein kinase C b1 isoform, which was previously demonstrated to be associated with the polymorphonuclear leukocyte chemotactic response.

Study of synthetic peptides derived from the PKI55 protein, a protein kinase C modulator, in human neutrophils stimulated by the methyl ester derivative of the hydrophobic N-formyl tripeptide for-Met-Leu-Phe-OH.

SELVATICI, Rita;FALZARANO, Maria Sofia;FRANCESCHETTI, Lara;GUERRINI, Remo;SINISCALCHI, Anna;SPISANI, Susanna
2008

Abstract

Elucidation of the involvement of protein kinase C subtypes in several diseases is an important challenge for the future development of new drug targets. We previously identified the PKI55 protein, which acts as a protein kinase C modulator, establishing a feedback loop of inhibition. The PKI55 protein is able to penetrate the cell membrane of activated human T-lymphocytes and to inhibit the activity of a, b1 and b2 protein kinase C isoforms. The present study aimed to identify the minimal amino acid sequence of PKI55 that is able to inhibit the enzyme activity of protein kinase C. Peptides derived from both C- and N-terminal sequences were synthesized and initially assayed in rat brain protein kinase C to identify which part of the entire protein maintained the in vitro effects described for PKI55, and then the active peptides were tested on the isoforms a, b1, b2, c, d, e and f to identify their specific inhibition properties. Specific protein kinase C isoforms have been associated with the activation of specific signal transduction pathways involved in inflammatory responses. Thus, the potential therapeutic role of the selected peptides has been studied in polymorphonuclear leukocytes activated by the methyl ester derivative of the hydrophobic N-formyl tripeptide for-Met-Leu-Phe-OH to evaluate their ability to modulate chemotaxis, superoxide anion production and lysozyme release. These studies have shown that only chemotactic function is significantly inhibited by these peptides, whereas superoxide anion production and lysozyme release remain unaffected. Western blotting experiments also demonstrated a selective reduction in the levels of the protein kinase C b1 isoform, which was previously demonstrated to be associated with the polymorphonuclear leukocyte chemotactic response.
2008
Selvatici, Rita; Falzarano, Maria Sofia; Franceschetti, Lara; A., Mollica; Guerrini, Remo; Siniscalchi, Anna; Spisani, Susanna
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/520811
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact