We recently suggested using short bent crystals as primary collimators in a two stage cleaning system for hadron colliders, with the aim of providing larger impact parameters in the secondary bulk absorber, through coherent beam-halo deflection. Tests with crystals a few mm long, performed with 70 GeV proton beams at IEHP in Protvino, showed a channeling efficiency exceeding 85 %. We also observed disturbing phenomena such as dechannelling at large impact angle, insufficient bending induced by volume capture inside the crystal, multiple scattering of non-channeled protons and, for the first time, a proton flux reflected by the crystalline planes. Indeed, protons with a tangent path to the curved planes somewhere inside the crystal itself are deflected in the opposite direction with respect to the channeled particles, with an angle almost twice as large as the critical angle. This effect, up to now only predicted by computer simulations, produces a flux of particles in the wrong direction with respect to the absorber, which may hamper the collimation efficiency if neglected.

First observation of proton reflection from bent crystals

GUIDI, Vincenzo;
2006

Abstract

We recently suggested using short bent crystals as primary collimators in a two stage cleaning system for hadron colliders, with the aim of providing larger impact parameters in the secondary bulk absorber, through coherent beam-halo deflection. Tests with crystals a few mm long, performed with 70 GeV proton beams at IEHP in Protvino, showed a channeling efficiency exceeding 85 %. We also observed disturbing phenomena such as dechannelling at large impact angle, insufficient bending induced by volume capture inside the crystal, multiple scattering of non-channeled protons and, for the first time, a proton flux reflected by the crystalline planes. Indeed, protons with a tangent path to the curved planes somewhere inside the crystal itself are deflected in the opposite direction with respect to the channeled particles, with an angle almost twice as large as the critical angle. This effect, up to now only predicted by computer simulations, produces a flux of particles in the wrong direction with respect to the absorber, which may hamper the collimation efficiency if neglected.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/497872
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact