We have recently reported that the combination of molecular electrostatic potential (MEP) surface properties (autocorrelation vectors) with the conventional partial least squares (PLS) analysis can be used to produce a robust ligand-based 3D structure-activity relationship (autoMEP/PLS) for the prediction of the human A3 receptor antagonist activities. Here, we present the application of the 3D-QSAR (autoMEP/PLS) approach as an efficient and alternative pharmacodynamic filtering method for small-sized virtual library. For this purpose, a small-sized combinatorial library (841 compounds) was derived from the scaffold of the known human A3 antagonist pyrazolo-triazolo-pyrimidines. The most interesting analogues were further prioritized for synthesis and pharmacological characterization. Remarkably, we have found that all the newly synthetized compounds are correctly predicted as potent human A3 antagonists. In particular, two of them are correctly predicted as sub-nanomolar inhibitors of the human A3 receptor.

The application of a 3D-QSAR (autoMEP/PLS) approach as an efficient pharmacodynamic-driven filtering method for small-sized virtual library: Application to a lead optimization of a human A(3) adenosine receptor antagonist

CACCIARI, Barbara;
2006

Abstract

We have recently reported that the combination of molecular electrostatic potential (MEP) surface properties (autocorrelation vectors) with the conventional partial least squares (PLS) analysis can be used to produce a robust ligand-based 3D structure-activity relationship (autoMEP/PLS) for the prediction of the human A3 receptor antagonist activities. Here, we present the application of the 3D-QSAR (autoMEP/PLS) approach as an efficient and alternative pharmacodynamic filtering method for small-sized virtual library. For this purpose, a small-sized combinatorial library (841 compounds) was derived from the scaffold of the known human A3 antagonist pyrazolo-triazolo-pyrimidines. The most interesting analogues were further prioritized for synthesis and pharmacological characterization. Remarkably, we have found that all the newly synthetized compounds are correctly predicted as potent human A3 antagonists. In particular, two of them are correctly predicted as sub-nanomolar inhibitors of the human A3 receptor.
2006
Moro, S; Bacilieri, M; Cacciari, Barbara; Bolcato, C; Cusan, C; Pastorin, G; Klotz, Kn; Spalluto, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/470117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact