A causa dell’aumento della richiesta energetica e della necessità di esplorare risorse sostenibili, ingenti sforzi sono rivolti verso l’applicazione di tecnologia solare. Grazie alle loro peculiarità, le Celle Solari Sensibilizzate con Colorante (DSSCs) potrebbero essere uno strumento complementare alla tecnologia al silicio. Questa tesi di Dottorato è incentrata nella comprensione delle proprietà (foto)/elettrochimiche di nuovi componenti per DSSCs. Il primo capitolo sperimentale, realizzato in collaborazione con il gruppo del Prof. Stagni, ha avuto come scopo la caratterizzazione di nuovi sensibilizzatori di Ru(II)-tetrazolati come esempio di complessi privi di leganti tiocianati. Quattro complessi (D1-D4) sono stati studiati assieme al ben noto standard di rutenio N719. La combinazione dell’analisi elettrochimica e spettroscopica ha evidenziato come la termodinamica dello stato fondamentale ed eccitato sia in grado di favorire un’efficiente separazione di carica. Queste caratteristiche hanno portato ad una resa quantica di conversione di fotoni in elettroni superiore all’80%. D4 è risultato essere il complesso più efficiente grazie alla combinazione della più estesa estensione spettrale, efficiente rigenerazione ed efficiente iniezione di carica. Gran parte della mia attività, tuttavia, è stata rivolta allo studio di sensibilizzatori per DSSCs a base di ferro. Tre capitoli, in collaborazione con i gruppi del Dr. P. C. Gros e dalla Dr. M. C. Pastore, riportano l’investigazione delle proprietà elettroniche di sensibilizzatori di Fe(II)NHC. Nel primo di questi abbiamo studiato le proprietà di trasferimento dinamiche di un complesso omolettico denominato C1, caratterizzato da leganti NHC σ-donatori e gruppi carbossilici π-accettori, il quale aveva inizialmente restituito valori di efficienza dello 0.13%. Abbiamo ottenuto un sostanziale aumento di efficienza ottenendo valori vicini all’1%. Il rendimento quantico di iniezione di carica è risultato essere attorno al 50% e costituisce il principale fattore limitante per le DSSCs a base di ferro. L’energetica dello stato eccitato è risultata ottimale per un’efficiente iniezione di carica quindi, le limitate prestazioni esibite da C1 derivano dal suo design simmetrico che porta ad un accoppiamento elettronico non favorevole con la superficie. Abbiamo così analizzato complessi carbenici eterolettici, il primo di questi era l’analogo asimmetrico di C1, ARM13, altri due invece erano caratterizzati dall’introduzione di un anello tiofenico (ARM7) e uno fenilico (ARM11) aventi la funzione di spaziatori fra le funzionalità ancoranti e le piridine coordinate al metallo centrale. L’idea di questo nuovo design era quella di aumentare la separazione di carica ed incrementare la capacità di raccolta di fotoni. Abbiamo ottenuto la più alta efficienza di cella riportata in letteratura del 1.5% per ARM13. In un terzo progetto abbiamo analizzato una nuova famiglia di complessi eterolettici caratterizzati dall’introduzione di gruppi elettron-donatori o elettron-attrattori sui leganti ancillari. ARM130, caratterizzato da una funzionalità dimetossifenilica, ha restituito le migliori performances dell’1.83%. L’ultimo capitolo della mia tesi riguarda invece lo studio di un controelettrodo (CE) alternativo per DSSCs basato su polimeri conduttori a base di poli(3,4-etilendiossitiofene) (PEDOT), fra questi il ben noto PEDOT/ClO4 (PER), elettropolimerizzato da solventi organici, risulta essere il miglior materiale elettrocatalitico. Al fine di studiare soluzioni più sostenibile, abbiamo esplorato le proprietà elettrochimiche di CE a base di PEDOT/Nafion (NAF) prodotti in ambiente acquoso. Il comportamento elettrocatalitico di PER e NAF è stato investigato in celle simmetriche mediante LSV ed EIS e in celle solari in presenza di D35, quest’ultimo ha generato efficienze di cella comparabili a quelle registrate in presenza di PER.

Due to the strong increase in the world energy consumption, and need of exploiting carbon neutral energy sources, increasing efforts have been devoted to the exploitation of solar energy technology. For their unique properties, Dye Sensitized Solar Cells (DSSC) could complement the established silicon junctions. This Ph.D. thesis is mainly focused on the understanding of the (photo)/electrochemical properties of new components for DSSCs. The first chapter, realized in collaboration with the Prof. Stagni’s group, is about the characterization of new examples of Ru(II)-tetrazolato dyes as thiocyanate-free sensitizers for solar cell applications. Four complexes (D1-D4) have been analyzed together with the well know standard N719. The combination of the electrochemical and spectroscopic analyses revealed ground and excited states thermodynamic properties suitable for efficient interfacial charge separation. These features resulted in external quantum yield of photon to electron conversions higher than 80%. The best performances have been recorded in the case of D4 thanks to the combinations of the broader harvesting, efficient regeneration, and electron injection. Three chapters of my thesis report about the collaborative research carried out with the groups led by Dr. P.C. Gros and Dr. M.C. Pastore, involving the investigation of the electronic properties of Fe(II)NHC (NHC=N-Heterocyclic-Carbene) sensitizers. First, we tried to rationalize the charge transfer dynamics of C1 a homoleptic complex bearing σ-donating NHCs and π-accepting carboxylic groups, which initially reported rather low performances (0.13 % of PCE%). We achieved a substantial progress in cell efficiency (PCE = 1%). We estimated an injection quantum yield (Φinj) of ca. 50% that, is believed to be the main limitation for the rather low PCE. In consideration of the excited state energetics, nearly optimal for injection into TiO2, this relatively low Φinj could be due to a non-optimal electronic coupling arising from the symmetric design of the homoleptic C1. For this reason, we moved to Fe(II)NHC heteroleptic designs characterized by an asymmetric coordination sphere. The first complex was the asymmetric analogue of C1 named ARM13, while other design incorporated spacers between the anchoring moieties and the pyridine linked to the metal center, in particular, a thiophene in the case of ARM7 and a phenyl ring in the case of ARM11. The rationale behind such designs was to increase the electron-hole separation and the light harvesting capability. We were able to obtain the highest power conversion efficiency (ARM13 ca. 1.5%) ever reported for a Fe(II) sensitizer. In a third project, we designed, realized and characterized a new family of heteroleptic Fe(II)NHC complexes bearing electron withdrawing or donating substituents on the ancillary ligands. In particular, among the new series, ARM130 bearing a dimethoxyphenyl group, exhibited the best performance, thanks to its improved light harvesting capability introduced by the electron-donating -OMe moieties. We obtained a Power Conversion Efficiency of 1.83%. The last chapter of my thesis is about the investigations of alternative counter electrode (CE) materials for DSSCs based on the poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer. The best and well-known electrocatalyst PEDOT/ClO4 (PER) involves the use of organic solvents, greener and sustainable alternative deposition routes are desirable. We explored the electrochemical properties of PEDOT/Nafion CE (NAF), produced through water- based electropolymerization. The electrocatalytic behavior of PER and NAF has been investigated in STLC by means of LSV and EIS, in the presence of either Co- or Cu- based electrolyte, NAF rivals the kinetic and mass transport properties of PER. This result was confirmed by the performance of D35 sensitized solar cells, where NAF counter electrodes generated comparable efficiency of those recorded for PER.

New Components for Dye Sensitized Solar Cells

MARCHINI, EDOARDO
2022-06-10T00:00:00+02:00

Abstract

Due to the strong increase in the world energy consumption, and need of exploiting carbon neutral energy sources, increasing efforts have been devoted to the exploitation of solar energy technology. For their unique properties, Dye Sensitized Solar Cells (DSSC) could complement the established silicon junctions. This Ph.D. thesis is mainly focused on the understanding of the (photo)/electrochemical properties of new components for DSSCs. The first chapter, realized in collaboration with the Prof. Stagni’s group, is about the characterization of new examples of Ru(II)-tetrazolato dyes as thiocyanate-free sensitizers for solar cell applications. Four complexes (D1-D4) have been analyzed together with the well know standard N719. The combination of the electrochemical and spectroscopic analyses revealed ground and excited states thermodynamic properties suitable for efficient interfacial charge separation. These features resulted in external quantum yield of photon to electron conversions higher than 80%. The best performances have been recorded in the case of D4 thanks to the combinations of the broader harvesting, efficient regeneration, and electron injection. Three chapters of my thesis report about the collaborative research carried out with the groups led by Dr. P.C. Gros and Dr. M.C. Pastore, involving the investigation of the electronic properties of Fe(II)NHC (NHC=N-Heterocyclic-Carbene) sensitizers. First, we tried to rationalize the charge transfer dynamics of C1 a homoleptic complex bearing σ-donating NHCs and π-accepting carboxylic groups, which initially reported rather low performances (0.13 % of PCE%). We achieved a substantial progress in cell efficiency (PCE = 1%). We estimated an injection quantum yield (Φinj) of ca. 50% that, is believed to be the main limitation for the rather low PCE. In consideration of the excited state energetics, nearly optimal for injection into TiO2, this relatively low Φinj could be due to a non-optimal electronic coupling arising from the symmetric design of the homoleptic C1. For this reason, we moved to Fe(II)NHC heteroleptic designs characterized by an asymmetric coordination sphere. The first complex was the asymmetric analogue of C1 named ARM13, while other design incorporated spacers between the anchoring moieties and the pyridine linked to the metal center, in particular, a thiophene in the case of ARM7 and a phenyl ring in the case of ARM11. The rationale behind such designs was to increase the electron-hole separation and the light harvesting capability. We were able to obtain the highest power conversion efficiency (ARM13 ca. 1.5%) ever reported for a Fe(II) sensitizer. In a third project, we designed, realized and characterized a new family of heteroleptic Fe(II)NHC complexes bearing electron withdrawing or donating substituents on the ancillary ligands. In particular, among the new series, ARM130 bearing a dimethoxyphenyl group, exhibited the best performance, thanks to its improved light harvesting capability introduced by the electron-donating -OMe moieties. We obtained a Power Conversion Efficiency of 1.83%. The last chapter of my thesis is about the investigations of alternative counter electrode (CE) materials for DSSCs based on the poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer. The best and well-known electrocatalyst PEDOT/ClO4 (PER) involves the use of organic solvents, greener and sustainable alternative deposition routes are desirable. We explored the electrochemical properties of PEDOT/Nafion CE (NAF), produced through water- based electropolymerization. The electrocatalytic behavior of PER and NAF has been investigated in STLC by means of LSV and EIS, in the presence of either Co- or Cu- based electrolyte, NAF rivals the kinetic and mass transport properties of PER. This result was confirmed by the performance of D35 sensitized solar cells, where NAF counter electrodes generated comparable efficiency of those recorded for PER.
MASSI, Alessandro
CARAMORI, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11392/2491033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact