Disoriented human beings and animals, the latter both sighted and blind, are able to use spatial geometric information (metric and sense properties) to guide their reorientation behaviour in a rectangular environment. Here we aimed to investigate reorientation spatial skills in three fish species (Danio rerio, Xenotoca eiseni, Carassius auratus) in an attempt to discover the possible involvement of extra-visual senses during geometric navigation. We observed the fish’s behaviour under different experimental procedures (spontaneous social cued task and rewarded exit task), providing them different temporal opportunities to experience the environmental shape (no experience, short and prolonged experience). Results showed that by using spontaneous social cued memory tasks, fishes were not able to take advantage of extra-visual senses to encode the spatial geometry, neither allowing them short time-periods of environmental exploration. Contrariwise, by using a reference memory procedure, during the rewarded exit tasks, thus providing a prolonged extra-visual experience, fishes solved the geometric task, showing also differences in terms of learning times among species.

The geometry as an eyed fish feels it in spontaneous and rewarded spatial reorientation tasks

Bertolucci C.
Ultimo
2020

Abstract

Disoriented human beings and animals, the latter both sighted and blind, are able to use spatial geometric information (metric and sense properties) to guide their reorientation behaviour in a rectangular environment. Here we aimed to investigate reorientation spatial skills in three fish species (Danio rerio, Xenotoca eiseni, Carassius auratus) in an attempt to discover the possible involvement of extra-visual senses during geometric navigation. We observed the fish’s behaviour under different experimental procedures (spontaneous social cued task and rewarded exit task), providing them different temporal opportunities to experience the environmental shape (no experience, short and prolonged experience). Results showed that by using spontaneous social cued memory tasks, fishes were not able to take advantage of extra-visual senses to encode the spatial geometry, neither allowing them short time-periods of environmental exploration. Contrariwise, by using a reference memory procedure, during the rewarded exit tasks, thus providing a prolonged extra-visual experience, fishes solved the geometric task, showing also differences in terms of learning times among species.
2020
Sovrano, V. A.; Baratti, G.; Potrich, D.; Bertolucci, C.
File in questo prodotto:
File Dimensione Formato  
s41598-020-64690-1.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2428642
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact