For applications in high energy particles accelerators, such as the crystal-assisted beam collimation, several strip crystals exploiting anticlastic curvature were produced in the last decade at the Sensor and Semiconductor Laboratory (SSL) of Ferrara by means of revisited techniques for silicon micromachining, such as photolitography and wet etching. Those techniques were recently enhanced by introducing a further treatment called Magnetorheological Finishing (MRF), which allowed to fabricate crystals with ultraflat surface and miscut very close to zero. The technology of the mechanical devices used to hold and bend crystals has been also improved by employing a titanium alloy to realize the holders. Characterization method were also improved: the usage of a high resolution X-rays diffractometer was introduced to directly measure crystal bending and torsion. Accuracy of the diffractometer was furtherly enhanced with an autocollimator, which found an important application in miscut characterization. A new infrared light interferometer was used to map the thickness of the starting swafers with sub-micrometric precision, as well as to measure the length along the beam of the strips. Crystals were characterized at the H8 external lines of CERN-SPS with various hundreds-GeV ion beams, which gave results in agreement with the precharacterization performed at SSL. One strip was selected among the crystals to be installed in the LHC beam pipe during the Long Shutdown 1 in 2014. These crystals were very recently tested in a crystal-assisted collimation experiment with a 6.5 TeV proton beam, resulting in the first observation of channeling at this record energy, being also the first observation of channeling of the beam circulating in the LHC.

Bent silicon strip crystals for high-energy charged particle beam collimation

Germogli, G.
;
Mazzolari, A.;Guidi, V.;Romagnoni, M.
2017

Abstract

For applications in high energy particles accelerators, such as the crystal-assisted beam collimation, several strip crystals exploiting anticlastic curvature were produced in the last decade at the Sensor and Semiconductor Laboratory (SSL) of Ferrara by means of revisited techniques for silicon micromachining, such as photolitography and wet etching. Those techniques were recently enhanced by introducing a further treatment called Magnetorheological Finishing (MRF), which allowed to fabricate crystals with ultraflat surface and miscut very close to zero. The technology of the mechanical devices used to hold and bend crystals has been also improved by employing a titanium alloy to realize the holders. Characterization method were also improved: the usage of a high resolution X-rays diffractometer was introduced to directly measure crystal bending and torsion. Accuracy of the diffractometer was furtherly enhanced with an autocollimator, which found an important application in miscut characterization. A new infrared light interferometer was used to map the thickness of the starting swafers with sub-micrometric precision, as well as to measure the length along the beam of the strips. Crystals were characterized at the H8 external lines of CERN-SPS with various hundreds-GeV ion beams, which gave results in agreement with the precharacterization performed at SSL. One strip was selected among the crystals to be installed in the LHC beam pipe during the Long Shutdown 1 in 2014. These crystals were very recently tested in a crystal-assisted collimation experiment with a 6.5 TeV proton beam, resulting in the first observation of channeling at this record energy, being also the first observation of channeling of the beam circulating in the LHC.
2017
Germogli, G.; Mazzolari, A.; Guidi, V.; Romagnoni, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2383338
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact