The enteric nervous system (ENS), a major regulatory system for gastrointestinal function, is composed of neurons and enteric glial cells (EGCs). Enteric glia have long been thought to provide only structural support to neurons. However, recent evidence indicates enteric glia-neuron cross talk significantly contributes to neuronal maintenance, survival, and function. Thus damage to EGCs may trigger neurodegenerative processes thought to play a role in gastrointestinal dysfunctions and symptoms. The purpose of this review is to provide an update on EGCs, particularly focusing on their possible neuroprotective features and the resultant enteric neuron abnormalities subsequent to EGC damage. These neuroprotective mechanisms may have pathogenetic relevance in a variety of functional and inflammatory gut diseases. Basic and clinical (translational) studies support a neuroprotective role mediated by EGCs. Different models have been developed to test whether selective EGC damage/ablation has an impact on gut functions and the ENS. Preclinical data indicated that selective EGC alterations were associated with changes in gut physiology related to enteric neuron abnormalities. In humans, a substantial loss of EGCs was described in patients with various functional and/or inflammatory gastrointestinal diseases. However, whether EGC changes precede or follow neuronal degeneration and loss and how this damage occurs is not defined. Additional studies on EGC neuroprotective capacity are expected to improve knowledge of gut diseases and pave the way for targeted therapeutic strategies of underlying neuropathies.

Enteric glia and neuroprotection: basic and clinical aspects

DE GIORGIO, Roberto
;
2012

Abstract

The enteric nervous system (ENS), a major regulatory system for gastrointestinal function, is composed of neurons and enteric glial cells (EGCs). Enteric glia have long been thought to provide only structural support to neurons. However, recent evidence indicates enteric glia-neuron cross talk significantly contributes to neuronal maintenance, survival, and function. Thus damage to EGCs may trigger neurodegenerative processes thought to play a role in gastrointestinal dysfunctions and symptoms. The purpose of this review is to provide an update on EGCs, particularly focusing on their possible neuroprotective features and the resultant enteric neuron abnormalities subsequent to EGC damage. These neuroprotective mechanisms may have pathogenetic relevance in a variety of functional and inflammatory gut diseases. Basic and clinical (translational) studies support a neuroprotective role mediated by EGCs. Different models have been developed to test whether selective EGC damage/ablation has an impact on gut functions and the ENS. Preclinical data indicated that selective EGC alterations were associated with changes in gut physiology related to enteric neuron abnormalities. In humans, a substantial loss of EGCs was described in patients with various functional and/or inflammatory gastrointestinal diseases. However, whether EGC changes precede or follow neuronal degeneration and loss and how this damage occurs is not defined. Additional studies on EGC neuroprotective capacity are expected to improve knowledge of gut diseases and pave the way for targeted therapeutic strategies of underlying neuropathies.
2012
DE GIORGIO, Roberto; Giancola, F; Boschetti, E; Abdo, H; Lardeux, B; Neunlist, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2374894
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 50
social impact