We report a highly performing anode material for sodium-ion batteries (SIBs) composed of graphene decorated by indium sulfide (In2S3). The composite is synthesized by a facile hydrothermal pathway with subsequent annealing and is characterized by defined structure and well-tailored morphology, as is indeed demonstrated by X-ray diffraction and spectroscopy as well as high-resolution microscopy. These optimal characteristics allow the electrode to perform remarkably in sodium cell by achieving a maximum specific capacity as high as 620 mAh g-1 and the still-relevant value of 335 mAh g-1 at an extremely high current (i.e., 5 A g-1). The high storage capacity, the long cycle life, and the impressive rate capability of the composite may be attributed to the synergetic effect between uniform In2S3 nanoparticles and the graphene matrix. These features suggest that the In2S3-graphene is a viable choice for application as an anode material in high-performance SIBs.

Graphene Decorated by Indium Sulfide Nanoparticles as High-Performance Anode for Sodium-Ion Batteries

HASSOUN, Jusef;
2017

Abstract

We report a highly performing anode material for sodium-ion batteries (SIBs) composed of graphene decorated by indium sulfide (In2S3). The composite is synthesized by a facile hydrothermal pathway with subsequent annealing and is characterized by defined structure and well-tailored morphology, as is indeed demonstrated by X-ray diffraction and spectroscopy as well as high-resolution microscopy. These optimal characteristics allow the electrode to perform remarkably in sodium cell by achieving a maximum specific capacity as high as 620 mAh g-1 and the still-relevant value of 335 mAh g-1 at an extremely high current (i.e., 5 A g-1). The high storage capacity, the long cycle life, and the impressive rate capability of the composite may be attributed to the synergetic effect between uniform In2S3 nanoparticles and the graphene matrix. These features suggest that the In2S3-graphene is a viable choice for application as an anode material in high-performance SIBs.
2017
Wang, Xia; Hwang, Jang Yeon; Myung, Seung Taek; Hassoun, Jusef; Sun, Yang Kook
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2373618
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 46
social impact