An anionic CoII complex, [Co(TTT) (NCS)3]− (TTT = 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine and NCS = isothiocyanate), was synthesized for use in dye-sensitized solar cells (DSSCs). The CoII complex was found to ion-pair with the hexacationic sensitizer [Ru(tmam)2(dcb)]6+ (tmam = 4,4′-bis(trimethylaminomethyl)-2,2′-bipyridine and dcb = 4,4′-(CO2H)2-2,2′-bipyridine) anchored to TiO2 thin films immersed in acetonitrile solution. Visible light excitation of the ion pairs resulted in excited-state injection followed by rapid static regeneration of the oxidized sensitizer (<10 ns). The static component to regeneration gave an ion-pair equilibrium constant of 6000 M–1. This value is an order of magnitude smaller than the equilibrium constant determined for [Ru(tmam)2(deeb)]6+ (deeb = 4,4′-(CO2Et)2-2,2′-bipyridine) dissolved in acetonitrile. DSSC studies employing [Co(TTT) (NCS)3]− or the cationic [Co(DTB)3]2+ (DTB = 4,4′-di-tert-butyl-2,2′-bipyridine) as redox mediators revealed a 3 fold photocurrent increase in the presence of the anionic cobalt complex. As the regeneration step was greatly enhanced through the formation of Coulombic ion pairs, both electron injection and regeneration were complete within 10 ns which is unprecedented for dye-sensitization. The results obtained reveal that ground-state ion-pairing can be a powerful strategy for DSSC optimization.

Rapid Static Sensitizer Regeneration Enabled by Ion Pairing

CASARIN, Laura
Primo
;
CARAMORI, Stefano;BIGNOZZI, Carlo Alberto
Penultimo
;
2017

Abstract

An anionic CoII complex, [Co(TTT) (NCS)3]− (TTT = 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine and NCS = isothiocyanate), was synthesized for use in dye-sensitized solar cells (DSSCs). The CoII complex was found to ion-pair with the hexacationic sensitizer [Ru(tmam)2(dcb)]6+ (tmam = 4,4′-bis(trimethylaminomethyl)-2,2′-bipyridine and dcb = 4,4′-(CO2H)2-2,2′-bipyridine) anchored to TiO2 thin films immersed in acetonitrile solution. Visible light excitation of the ion pairs resulted in excited-state injection followed by rapid static regeneration of the oxidized sensitizer (<10 ns). The static component to regeneration gave an ion-pair equilibrium constant of 6000 M–1. This value is an order of magnitude smaller than the equilibrium constant determined for [Ru(tmam)2(deeb)]6+ (deeb = 4,4′-(CO2Et)2-2,2′-bipyridine) dissolved in acetonitrile. DSSC studies employing [Co(TTT) (NCS)3]− or the cationic [Co(DTB)3]2+ (DTB = 4,4′-di-tert-butyl-2,2′-bipyridine) as redox mediators revealed a 3 fold photocurrent increase in the presence of the anionic cobalt complex. As the regeneration step was greatly enhanced through the formation of Coulombic ion pairs, both electron injection and regeneration were complete within 10 ns which is unprecedented for dye-sensitization. The results obtained reveal that ground-state ion-pairing can be a powerful strategy for DSSC optimization.
2017
Casarin, Laura; Swords, Wesley; Caramori, Stefano; Bignozzi, Carlo Alberto; Meyer, Gerald
File in questo prodotto:
File Dimensione Formato  
published no page no.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri
acs.inorgchem.7b00819.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2372664
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact