Previously we reported a new series of highly defective herpes simplex virus type 1 (HSV-1) vectors that were functionally devoid of all viral immediately early (IE) genes, resulting in virtual absence of viral gene expression. Nevertheless, a reporter gene cassette inserted into the vector flanked by boundary elements from the viral latency locus showed high, persistent reporter gene activity in non-neuronal cells while an independent expression cassette inserted into a deleted ICP4 locus remained almost silent. In contrast to non-neuronal cells, we show here that the ICP4 locus cassette permitted robust reporter gene expression in a diversity of neurons following stereotactic injection of different rat brain regions; transgene expression in the hippocampus lasted up to 6 months and was essentially restricted to neurons. No evidence of neuronal cell toxicity or induction of inflammatory cell infiltrates was observed. An independent reporter gene cassette located in an intergenic region remained silent, indicating that the transgene promoter and/or insertion site are critical for sustained expression. These findings suggest the suitability of this vector for therapeutic intervention into diseases of the central nervous system that require the expression of large and/or multiple therapeutic transgenes.

Engineered HSV vector achieves safe long-term transgene expression in the central nervous system

VERLENGIA, Gianluca
Primo
;
INGUSCI, Selene;SIMONATO, Michele
Penultimo
;
GLORIOSO, Joseph Charles
Ultimo
2017

Abstract

Previously we reported a new series of highly defective herpes simplex virus type 1 (HSV-1) vectors that were functionally devoid of all viral immediately early (IE) genes, resulting in virtual absence of viral gene expression. Nevertheless, a reporter gene cassette inserted into the vector flanked by boundary elements from the viral latency locus showed high, persistent reporter gene activity in non-neuronal cells while an independent expression cassette inserted into a deleted ICP4 locus remained almost silent. In contrast to non-neuronal cells, we show here that the ICP4 locus cassette permitted robust reporter gene expression in a diversity of neurons following stereotactic injection of different rat brain regions; transgene expression in the hippocampus lasted up to 6 months and was essentially restricted to neurons. No evidence of neuronal cell toxicity or induction of inflammatory cell infiltrates was observed. An independent reporter gene cassette located in an intergenic region remained silent, indicating that the transgene promoter and/or insertion site are critical for sustained expression. These findings suggest the suitability of this vector for therapeutic intervention into diseases of the central nervous system that require the expression of large and/or multiple therapeutic transgenes.
2017
Verlengia, Gianluca; Miyagawa, Yoshitaka; Ingusci, Selene; Cohen, Justus B.; Simonato, Michele; Glorioso, Joseph Charles
File in questo prodotto:
File Dimensione Formato  
Verlengia 2017 SciRep.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 8.1 MB
Formato Adobe PDF
8.1 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2370706
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact