A geochemical and statistical approach has allowed identifying in rare earth elements (REEs) absorption a good fingerprinting mark for determining the territoriality and the provenance of Vitis vinifera L. in the district of Mount Etna (southern Italy). Our aim is to define the REEs distribution in different parts of the plants which grow in the same volcanic soil and under the same climate conditions, and therefore to assess whether REEs distribution may reflect the composition of the provenance soil or if plants can selectively absorb REEs in order to recognize the fingerprint in the Etna Volcano soils as well as the REEs pattern characteristic of each cultivar of V. vinifera L. The characteristic pattern of REEs has been determined by ICP-MS analyses in the soils and in the selected grapevine varieties for all the following parts: leaves, seeds, juice, skin, and berries. These geochemical criteria, together with the multivariate statistical analysis of the principal component analysis (PCA) and of the linear discriminant analysis (LDA) that can be summarized with the box plot, suggest that leaves mostly absorb REEs than the other parts of the plant. This work investigates the various parts of the plant in order to verify if each grape variety presents a characteristic geochemical pattern in the absorption of REEs in relationship with the geochemical features of the soil so to highlight the individual compositional fingerprint. Based on REE patterns, our study is a useful tool that allows characterizing the differences among the grape varieties and lays the foundation for the use of REEs in the geographic origin of the Mount Etna wine district.

Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna (Sicily, Italy)

D'ANTONE, Carmelisa
Primo
;
VACCARO, Carmela
Ultimo
2017

Abstract

A geochemical and statistical approach has allowed identifying in rare earth elements (REEs) absorption a good fingerprinting mark for determining the territoriality and the provenance of Vitis vinifera L. in the district of Mount Etna (southern Italy). Our aim is to define the REEs distribution in different parts of the plants which grow in the same volcanic soil and under the same climate conditions, and therefore to assess whether REEs distribution may reflect the composition of the provenance soil or if plants can selectively absorb REEs in order to recognize the fingerprint in the Etna Volcano soils as well as the REEs pattern characteristic of each cultivar of V. vinifera L. The characteristic pattern of REEs has been determined by ICP-MS analyses in the soils and in the selected grapevine varieties for all the following parts: leaves, seeds, juice, skin, and berries. These geochemical criteria, together with the multivariate statistical analysis of the principal component analysis (PCA) and of the linear discriminant analysis (LDA) that can be summarized with the box plot, suggest that leaves mostly absorb REEs than the other parts of the plant. This work investigates the various parts of the plant in order to verify if each grape variety presents a characteristic geochemical pattern in the absorption of REEs in relationship with the geochemical features of the soil so to highlight the individual compositional fingerprint. Based on REE patterns, our study is a useful tool that allows characterizing the differences among the grape varieties and lays the foundation for the use of REEs in the geographic origin of the Mount Etna wine district.
2017
D'Antone, Carmelisa; Punturo, Rosalda; Vaccaro, Carmela
File in questo prodotto:
File Dimensione Formato  
EMAS-REE Grapevine 2 (1).pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2367384
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact