Manufacturing and assembly (geometric) errors affect the positioning precision of manipulators. In six degrees-of-freedom (6DOF) manipulators, geometric error effects can be compensated through suitable calibration procedures. This, in general, is not possible in lower-mobility manipulators. Thus, methods that evaluate such effects must be implemented at the design stage to determine both which workspace region is less affected by these errors and which dimensional tolerances must be assigned to match given positioning-precision requirements. In the literature, such evaluations are mainly tailored on particular architectures, and the proposed techniques are difficult to extend. Here, a general discussion on how to take into account geometric error effects is presented together with a general method to solve this design problem. The proposed method can be applied to any nonoverconstrained architecture. Eventually, as a case study, the method is applied to the analysis of the geometric error effects of the translational parallel manipulator (TPM) Triflex-II.

Geometric Error Effects on Manipulators' Positioning Precision: A General Analysis and Evaluation Method

DI GREGORIO, Raffaele
Ultimo
2016

Abstract

Manufacturing and assembly (geometric) errors affect the positioning precision of manipulators. In six degrees-of-freedom (6DOF) manipulators, geometric error effects can be compensated through suitable calibration procedures. This, in general, is not possible in lower-mobility manipulators. Thus, methods that evaluate such effects must be implemented at the design stage to determine both which workspace region is less affected by these errors and which dimensional tolerances must be assigned to match given positioning-precision requirements. In the literature, such evaluations are mainly tailored on particular architectures, and the proposed techniques are difficult to extend. Here, a general discussion on how to take into account geometric error effects is presented together with a general method to solve this design problem. The proposed method can be applied to any nonoverconstrained architecture. Eventually, as a case study, the method is applied to the analysis of the geometric error effects of the translational parallel manipulator (TPM) Triflex-II.
2016
Simas, Henrique; DI GREGORIO, Raffaele
File in questo prodotto:
File Dimensione Formato  
jmr_008_06_061016.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392_2360801_POST_Di_Gregorio.pdf

accesso aperto

Tipologia: Post-print
Licenza: Creative commons
Dimensione 606.06 kB
Formato Adobe PDF
606.06 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2360801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact