The quality and purity of the air entering a gas turbine is a significant factor influencing its performance and life. Foulants in the ppm range which are not captured by the air filtration system usually cause deposits on blading, which results in a severe drop in the performance of the compressor. Through the interdisciplinary approach proposed in this paper, it is possible to determine the evolution of the fouling phenomenon through the integration of studies in different research fields: (i) numerical simulation, (ii) power plant characteristics and (iii) particle-Adhesion characteristics. In fact, the size of the particles, their concentrations and adhesion ability, and filtration efficiency represent the major contributors to performing a realistic quantitative analysis of fouling phenomena in an axial compressor. The aim of this work is the estimation of the actual deposits on the blade surface in terms of location and quantity. This study combines the impact/adhesion characteristic of the particles obtained through a CFD and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by deposits are clearly reported by using easy-To-use contaminant maps realized on the blade surface, in terms of contaminant mass. The analysis has shown that particular fluid-dynamic phenomena and airfoil shape influence the pattern deposition. The use of a filtration system decreases the contamination of the blade and the charge level of the electrostatic seems to be less important than the air contaminant concentration. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn up. Characterization of the air contaminants in the power plant location represents the most important step in improving the management of the gas turbine power plant.

Estimation of the particle deposition on a subsonic axial compressor blade

SUMAN, Alessio;ALDI, Nicola;PINELLI, Michele;SPINA, Pier Ruggero
2016

Abstract

The quality and purity of the air entering a gas turbine is a significant factor influencing its performance and life. Foulants in the ppm range which are not captured by the air filtration system usually cause deposits on blading, which results in a severe drop in the performance of the compressor. Through the interdisciplinary approach proposed in this paper, it is possible to determine the evolution of the fouling phenomenon through the integration of studies in different research fields: (i) numerical simulation, (ii) power plant characteristics and (iii) particle-Adhesion characteristics. In fact, the size of the particles, their concentrations and adhesion ability, and filtration efficiency represent the major contributors to performing a realistic quantitative analysis of fouling phenomena in an axial compressor. The aim of this work is the estimation of the actual deposits on the blade surface in terms of location and quantity. This study combines the impact/adhesion characteristic of the particles obtained through a CFD and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by deposits are clearly reported by using easy-To-use contaminant maps realized on the blade surface, in terms of contaminant mass. The analysis has shown that particular fluid-dynamic phenomena and airfoil shape influence the pattern deposition. The use of a filtration system decreases the contamination of the blade and the charge level of the electrostatic seems to be less important than the air contaminant concentration. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn up. Characterization of the air contaminants in the power plant location represents the most important step in improving the management of the gas turbine power plant.
2016
9780791849873
9780791849873
Axial flow turbomachinery; Compressors; Computational fluid dynamics; Deposition; Fouling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2360336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact