MicroRNAs (miRs) are conserved, small (20-25 nucleotide) noncoding RNAs that negatively regulate expression of messenger RNAs (mRNAs) at the posttranscriptional level. Aberrant expression of certain microRNAs plays a causal role in tumorigenesis. Here, we report identification of hepatic microRNAsthat are dysregulated at early stages of feedingC57BL/6 mice choline-deficient and amino acid-defined (CDAA) diet that is known to promote nonalcoholic steatohepatitis (NASH)-induced hepatocarcinogenesis after 84 weeks. Microarray analysis identified 30 hepatic microRNAs that are significantly (P ≤ 0.01) altered in mice fed CDAA diet for 6, 18, 32, and 65 weeks compared with those fed choline-sufficient and amino acid-defined (CSAA) diet. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrated up-regulation of oncogenic miR-155, miR-221/222, and miR-21 and down-regulation of the most abundant liver-specific miR-122 at early stages of hepatocarcinogenesis. Western blot analysis showed reduced expression of hepatic phosphatase and tensin homolog (PTEN) and CCAAT/enhancer binding protein beta (C/EBPβ), respective targets of miR-21 and miR-155, in these mice at early stages. DNA binding activity of nuclear factor kappa B (NF-κB) that transactivates miR-155 gene was significantly (P = 0.002) elevated in the liver nuclear extract of mice fed CDAA diet. Furthermore, the expression of miR-155, as measured by in situ hybridization and real-time RT-PCR, correlated with diet-induced histopathological changes in the liver. Ectopic expression of miR-155 promoted growth of hepatocellular carcinoma (HCC) cells, whereas its depletion inhibited cell growth. Notably, miR-155 was significantly (P = 0.0004) upregulated in primary human HCCs with a concomitant decrease (P = 0.02) in C/EBPβ level compared with matching liver tissues. Conclusion: Temporal changes in microRNA profile occur at early stages of CDAA diet-induced hepatocarcinogenesis. Reciprocal regulation of specific oncomirs and their tumor suppressor targets implicate their role in NASH-induced hepatocarcinogenesis and suggest their use in the diagnosis, prognosis, and therapy of liver cancer. Copyright © 2009 by the American Association for the Study of Liver Diseases.

Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice

VOLINIA, Stefano;CROCE, Carlo Maria;
2009

Abstract

MicroRNAs (miRs) are conserved, small (20-25 nucleotide) noncoding RNAs that negatively regulate expression of messenger RNAs (mRNAs) at the posttranscriptional level. Aberrant expression of certain microRNAs plays a causal role in tumorigenesis. Here, we report identification of hepatic microRNAsthat are dysregulated at early stages of feedingC57BL/6 mice choline-deficient and amino acid-defined (CDAA) diet that is known to promote nonalcoholic steatohepatitis (NASH)-induced hepatocarcinogenesis after 84 weeks. Microarray analysis identified 30 hepatic microRNAs that are significantly (P ≤ 0.01) altered in mice fed CDAA diet for 6, 18, 32, and 65 weeks compared with those fed choline-sufficient and amino acid-defined (CSAA) diet. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrated up-regulation of oncogenic miR-155, miR-221/222, and miR-21 and down-regulation of the most abundant liver-specific miR-122 at early stages of hepatocarcinogenesis. Western blot analysis showed reduced expression of hepatic phosphatase and tensin homolog (PTEN) and CCAAT/enhancer binding protein beta (C/EBPβ), respective targets of miR-21 and miR-155, in these mice at early stages. DNA binding activity of nuclear factor kappa B (NF-κB) that transactivates miR-155 gene was significantly (P = 0.002) elevated in the liver nuclear extract of mice fed CDAA diet. Furthermore, the expression of miR-155, as measured by in situ hybridization and real-time RT-PCR, correlated with diet-induced histopathological changes in the liver. Ectopic expression of miR-155 promoted growth of hepatocellular carcinoma (HCC) cells, whereas its depletion inhibited cell growth. Notably, miR-155 was significantly (P = 0.0004) upregulated in primary human HCCs with a concomitant decrease (P = 0.02) in C/EBPβ level compared with matching liver tissues. Conclusion: Temporal changes in microRNA profile occur at early stages of CDAA diet-induced hepatocarcinogenesis. Reciprocal regulation of specific oncomirs and their tumor suppressor targets implicate their role in NASH-induced hepatocarcinogenesis and suggest their use in the diagnosis, prognosis, and therapy of liver cancer. Copyright © 2009 by the American Association for the Study of Liver Diseases.
2009
Wang, Bo; Majumder, Sarmila; Nuovo, Gerard; Kutay, Huban; Volinia, Stefano; Patel, Tushar; Schmittgen, Thomas D.; Croce, Carlo Maria; Ghoshal, Kalpana; Jacob, Samson T.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2357489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 278
  • ???jsp.display-item.citation.isi??? 251
social impact