The charge transfer dynamics involving a new Ru(II) polypyridine complex (1), developed to generate highly oxidizing photoholes for water oxidation, was studied by electrochemical, photoelectrochemical and spectroscopic means. Mesoporous TiO2 electrodes sensitized with complex 1, under 1 sun illumination (420 nm cut-off filter) and a moderate applied bias (0.3 V vs. SCE), in ACN/0.1 M LiI as a sacrificial electron donor reach an anodic photocurrent of similar to 0.2 mA cm(-2) with 3% photon-to-current conversion efficiency. When 0.1 M aqueous sodium ascorbate (pH 3) is used instead of iodide, the photocurrent increases to similar to 0.7 mA cm(-2) and up to 1 mA cm(-2) if the concentration of ascorbate is increased to 0.5 M, explainable with a modification of the charge injection mechanism. This is the photoelectrochemical evidence, in the heterogeneous phase, of the so-called "anti-biomimetic" pathway, confirmed in transient absorption spectroscopy by a long lived sharp bleaching at 480 nm and a narrow absorption between 500 and 550 nm, characteristic fingerprints of the photogenerated reduced state (1(-)). After the formation of *1/TiO2, reductive quenching by ascorbate occurs, not observed in LiI where the classic oxidative quenching takes place. Due to the modest excited state oxidation potential, electron transfer to TiO2 is thermodynamically more favorable from 1(-) than *1. Lastly, experiments performed with sensitized SnO2 photoanodes, where *1 undergoes the usual oxidative quenching, by charge transfer to the conduction band of the metal oxide allowed us to verify the interaction between 1(+) and IrO2 nanoparticles, grafted onto the surface in order to drive photoinduced water oxidation.

Charge injection into nanostructured TiO2 electrodes from the photogenerated reduced form of a new Ru(II) polypyridine compound: the "anti-biomimetic" mechanism at work

ARGAZZI, Roberto;BERARDI, Serena;CARAMORI, Stefano
;
BIGNOZZI, Carlo Alberto
Penultimo
;
2016

Abstract

The charge transfer dynamics involving a new Ru(II) polypyridine complex (1), developed to generate highly oxidizing photoholes for water oxidation, was studied by electrochemical, photoelectrochemical and spectroscopic means. Mesoporous TiO2 electrodes sensitized with complex 1, under 1 sun illumination (420 nm cut-off filter) and a moderate applied bias (0.3 V vs. SCE), in ACN/0.1 M LiI as a sacrificial electron donor reach an anodic photocurrent of similar to 0.2 mA cm(-2) with 3% photon-to-current conversion efficiency. When 0.1 M aqueous sodium ascorbate (pH 3) is used instead of iodide, the photocurrent increases to similar to 0.7 mA cm(-2) and up to 1 mA cm(-2) if the concentration of ascorbate is increased to 0.5 M, explainable with a modification of the charge injection mechanism. This is the photoelectrochemical evidence, in the heterogeneous phase, of the so-called "anti-biomimetic" pathway, confirmed in transient absorption spectroscopy by a long lived sharp bleaching at 480 nm and a narrow absorption between 500 and 550 nm, characteristic fingerprints of the photogenerated reduced state (1(-)). After the formation of *1/TiO2, reductive quenching by ascorbate occurs, not observed in LiI where the classic oxidative quenching takes place. Due to the modest excited state oxidation potential, electron transfer to TiO2 is thermodynamically more favorable from 1(-) than *1. Lastly, experiments performed with sensitized SnO2 photoanodes, where *1 undergoes the usual oxidative quenching, by charge transfer to the conduction band of the metal oxide allowed us to verify the interaction between 1(+) and IrO2 nanoparticles, grafted onto the surface in order to drive photoinduced water oxidation.
2016
Federico, Ronconi; Marie Pierre, Santoni; Francesco, Nastasi; Giuseppe, Bruno; Argazzi, Roberto; Berardi, Serena; Caramori, Stefano; Bignozzi, Carlo Alberto; Sebastiano, Campagna
File in questo prodotto:
File Dimensione Formato  
published paper.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392_2356526Post-print-Bignozzi.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 705.25 kB
Formato Adobe PDF
705.25 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2356526
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact