A novel soluble phthalocyanine compound, i.e zinc phthalocyanine (sulfonamide) has been synthesized by chemical substitution of zinc phthalocyanine and used to produce thin solid films by means of the spin coating technique. The chemical structure of the spin coated films has been investigated by FT-IR analysis. Atomic Force Microscopy (AFM) has been used to characterize the film morphology and to measure the film thickness. The spin coated films have been tested as optical sensing materials of volatile organic compounds such as methanol, ethanol and 2-propanol. The change of optical reflectance of the films upon exposure to alcohol-vapour-containing atmospheres has been measured versus alcohol concentration and exposure time. The films exhibit a fast and reproducible response, with a complete and fast recovery in methanol and ethanol-containing atmospheres, while diffusion-driven effects appear during exposure to 2-propanol. The response and sensitivity of the films to ethanol vapour is higher than to methanol and 2-propanol.

Soluble phthalocyanines as optical gas sensing materials

TONEZZER, Michele
2007

Abstract

A novel soluble phthalocyanine compound, i.e zinc phthalocyanine (sulfonamide) has been synthesized by chemical substitution of zinc phthalocyanine and used to produce thin solid films by means of the spin coating technique. The chemical structure of the spin coated films has been investigated by FT-IR analysis. Atomic Force Microscopy (AFM) has been used to characterize the film morphology and to measure the film thickness. The spin coated films have been tested as optical sensing materials of volatile organic compounds such as methanol, ethanol and 2-propanol. The change of optical reflectance of the films upon exposure to alcohol-vapour-containing atmospheres has been measured versus alcohol concentration and exposure time. The films exhibit a fast and reproducible response, with a complete and fast recovery in methanol and ethanol-containing atmospheres, while diffusion-driven effects appear during exposure to 2-propanol. The response and sensitivity of the films to ethanol vapour is higher than to methanol and 2-propanol.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2341420
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact