Seismic upgrading of existing structures is a technical and social issue aimed at risk reduction. Sustainable design is one of the most important challenges in any structural project. Nowadays, many retrofit strategies are feasible and several traditional and innovative options are available to engineers. Basically, the design strategy can lead to increase structural ductility, strength, or both of them, but also stiffness regulation and supplemental damping are possible strategies to reduce seismic vulnerability. Each design solution has different technical and economical performances. In this paper, four different design solutions are presented for the retrofit of an existing RC frame with poor concrete quality and inadequate reinforcement detailing. The considered solutions are based on FRP wrapping of the existing structural elements or alternatively on new RC shear walls introduction. This paper shows the comparison among the considered design strategies in order to select the suitable solution, which reaches the compromise between the obtained safety level and costs during the life-cycle of the building. Each solution is worked out by considering three different levels of seismic demand. The structural capacity of the considered retrofit solutions is assessed with nonlinear static analysis and the seismic performance is evaluated with the capacity spectrum method.

Sustainable retrofit design of RC frames evaluated for different seismic demand

ZERBIN, Matteo;APRILE, Alessandra
2015

Abstract

Seismic upgrading of existing structures is a technical and social issue aimed at risk reduction. Sustainable design is one of the most important challenges in any structural project. Nowadays, many retrofit strategies are feasible and several traditional and innovative options are available to engineers. Basically, the design strategy can lead to increase structural ductility, strength, or both of them, but also stiffness regulation and supplemental damping are possible strategies to reduce seismic vulnerability. Each design solution has different technical and economical performances. In this paper, four different design solutions are presented for the retrofit of an existing RC frame with poor concrete quality and inadequate reinforcement detailing. The considered solutions are based on FRP wrapping of the existing structural elements or alternatively on new RC shear walls introduction. This paper shows the comparison among the considered design strategies in order to select the suitable solution, which reaches the compromise between the obtained safety level and costs during the life-cycle of the building. Each solution is worked out by considering three different levels of seismic demand. The structural capacity of the considered retrofit solutions is assessed with nonlinear static analysis and the seismic performance is evaluated with the capacity spectrum method.
2015
Zerbin, Matteo; Aprile, Alessandra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2338712
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact