We perform an analysis of the CMB temperature data taken by the Planck satellite investigating if there is any significant deviation from cosmological isotropy. We look for differences in the spectrum between two opposite hemispheres and also for dipolar modulations. We propose a new way to avoid biases due to partial-sky coverage by producing a mask symmetrized in antipodal directions, in addition to the standard smoothing procedure. We also properly take into account both Doppler and aberration effects due to our peculiar velocity and the anisotropy of the noise, since these effects induce a significant hemispherical asymmetry. We are thus able to probe scales all the way to ℓ = 2000. After such treatment we find no evidence for significant hemispherical anomalies along any of the analyzed directions (i.e. deviations are less than 1.5σ when summing over all scales). Although among the larger scales there are sometimes higher discrepancies, these are always less than 3σ. We also find results on a dipolar modulation of the power spectrum. Along the hemispheres aligned with the most asymmetric direction for 2 ≤ ℓ ≤ 2000 we find a 3.3σ discrepancy when comparing to simulations. However, if we do not restrict ourselves to Planck's maximal asymmetry axis, which can only be known a posteriori, and compare Planck data with the modulation of simulations along their respective maximal asymmetry directions, the discrepancy goes down to less than 1σ (with, again, almost 3σ discrepancies in some low-ℓ modes). We thus conclude that no significant power asymmetries seem to be present in the full data set. Interestingly, without proper removal of Doppler and aberration effects one would find spurious anomalies at high ℓ, between 3σ and 5σ. Even when considering only ℓ < 600 we find that the boost is non-negligible and alleviates the discrepancy by roughly half-σ.

On the significance of power asymmetries in Planck CMB data at all scales

NOTARI, Alessio
2015

Abstract

We perform an analysis of the CMB temperature data taken by the Planck satellite investigating if there is any significant deviation from cosmological isotropy. We look for differences in the spectrum between two opposite hemispheres and also for dipolar modulations. We propose a new way to avoid biases due to partial-sky coverage by producing a mask symmetrized in antipodal directions, in addition to the standard smoothing procedure. We also properly take into account both Doppler and aberration effects due to our peculiar velocity and the anisotropy of the noise, since these effects induce a significant hemispherical asymmetry. We are thus able to probe scales all the way to ℓ = 2000. After such treatment we find no evidence for significant hemispherical anomalies along any of the analyzed directions (i.e. deviations are less than 1.5σ when summing over all scales). Although among the larger scales there are sometimes higher discrepancies, these are always less than 3σ. We also find results on a dipolar modulation of the power spectrum. Along the hemispheres aligned with the most asymmetric direction for 2 ≤ ℓ ≤ 2000 we find a 3.3σ discrepancy when comparing to simulations. However, if we do not restrict ourselves to Planck's maximal asymmetry axis, which can only be known a posteriori, and compare Planck data with the modulation of simulations along their respective maximal asymmetry directions, the discrepancy goes down to less than 1σ (with, again, almost 3σ discrepancies in some low-ℓ modes). We thus conclude that no significant power asymmetries seem to be present in the full data set. Interestingly, without proper removal of Doppler and aberration effects one would find spurious anomalies at high ℓ, between 3σ and 5σ. Even when considering only ℓ < 600 we find that the boost is non-negligible and alleviates the discrepancy by roughly half-σ.
2015
Quartin, Miguel; Notari, Alessio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2337133
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 46
social impact