A Cu-supported, graphene nanoplatelet (GNP) electrodes are reported a as high performance anode in lithium ion battery. The electrode precursor is an easy-to-handle aqueous ink cast on cupper foil and following dried in air. The scanning electron microscopy evidences homogeneous, micrometric flakeslike morphology. Electrochemical tests in conventional electrolyte reveal a capacity of about 450 mAh g−1 over 300 cycles, delivered at a current rate as high as 740 mA g−1 . The graphene-based electrode is characterized using a N-butyl-N-methyl-pyrrolidiniumbis (trifl uoromethanesulfonyl) imide, lithiumbis(trifl uoromethanesulfonyl)imide (Py1,4TFSI–LiTFSI) ionic liquid-based solution added by ethylene carbonate (EC): dimethyl carbonate (DMC). The Li-electrolyte interface is investigated by galvanostatic and potentiostatic techniques as well as by electrochemical impedance spectroscopy, in order to allow the use of the graphene-nanoplatelets as anode in advanced lithium-ion battery. Indeed, the electrode is coupled with a LiFePO4 cathode in a battery having a relevant safety content, due to the ionic liquid-based electrolyte that is characterized by an ionic conductivity of the order of 10−2 S cm−1 , a transference number of 0.38 and a high electrochemical stability. The lithium ion battery delivers a capacity of the order of 150 mAh g−1 with an efficiency approaching 100%, thus suggesting the suitability of GNPs anode for application in advanced configuration energy storage systems.
Data di pubblicazione: | 2015 | |
Titolo: | Characteristics of a Graphene Nanoplatelet Anode in Advanced Lithium-Ion Batteries Using Ionic Liquid Added by a Carbonate Electrolyte | |
Autori: | Agostini, Marco; Rizzi, Laura Giorgia; Cesareo, Giulio; Russo, Valeria; Hassoun, Jusef | |
Rivista: | ADVANCED MATERIALS INTERFACES | |
Parole Chiave: | graphene nanoplatelets; high performance anode; Py<inf>1,4</inf>TFSI-LiTFSI ionic liquid electrolyte; safe lithium-ion battery; Mechanical Engineering; Mechanics of Materials | |
Abstract: | A Cu-supported, graphene nanoplatelet (GNP) electrodes are reported a as high performance anode in lithium ion battery. The electrode precursor is an easy-to-handle aqueous ink cast on cupper foil and following dried in air. The scanning electron microscopy evidences homogeneous, micrometric flakeslike morphology. Electrochemical tests in conventional electrolyte reveal a capacity of about 450 mAh g−1 over 300 cycles, delivered at a current rate as high as 740 mA g−1 . The graphene-based electrode is characterized using a N-butyl-N-methyl-pyrrolidiniumbis (trifl uoromethanesulfonyl) imide, lithiumbis(trifl uoromethanesulfonyl)imide (Py1,4TFSI–LiTFSI) ionic liquid-based solution added by ethylene carbonate (EC): dimethyl carbonate (DMC). The Li-electrolyte interface is investigated by galvanostatic and potentiostatic techniques as well as by electrochemical impedance spectroscopy, in order to allow the use of the graphene-nanoplatelets as anode in advanced lithium-ion battery. Indeed, the electrode is coupled with a LiFePO4 cathode in a battery having a relevant safety content, due to the ionic liquid-based electrolyte that is characterized by an ionic conductivity of the order of 10−2 S cm−1 , a transference number of 0.38 and a high electrochemical stability. The lithium ion battery delivers a capacity of the order of 150 mAh g−1 with an efficiency approaching 100%, thus suggesting the suitability of GNPs anode for application in advanced configuration energy storage systems. | |
Digital Object Identifier (DOI): | 10.1002/admi.201500085 | |
Handle: | http://hdl.handle.net/11392/2335339 | |
Appare nelle tipologie: | 03.1 Articolo su rivista |