Caveolae are plasma membrane invaginations enriched in sterols and sphingolipids. Sphingosine kinase 1 (SK1) is an oncogenic protein that converts sphingosine to sphingosine 1-phosphate (S1P), which is a messenger molecule involved in calcium signaling. Caveolae contain calcium responsive proteins, but the effects of SK1 or S1P on caveolar calcium signaling have not been investigated. We generated a Caveolin-1-Aequorin fusion protein (Cav1-Aeq) that can be employed for monitoring the local calcium concentration at the caveolae ([Ca2+]cav). In HeLa cells, Cav1-Aeq reported different [Ca2+] as compared to the plasma membrane [Ca2+] in general (reported by SNAP25-Aeq) or as compared to the cytosolic [Ca2+] (reported by cyt-Aeq). The Ca2+ signals detected by Cav1-Aeq were significantly attenuated when the caveolar structures were disrupted by methyl-β-cyclodextrin, suggesting that the caveolae are specific targets for Ca2+ signaling. HeLa cells overexpressing SK1 showed increased [Ca2+]cav during histamine-induced Ca2+ mobilization in the absence of extracellular Ca2+ as well as during receptor-operated Ca2+ entry (ROCE). The SK1-induced increase in [Ca2+]cav during ROCE was reverted by S1P receptor antagonists. In accordance, pharmacologic inhibition of SK1 reduced the [Ca2+]cav during ROCE. S1P treatment stimulated the [Ca2+]cav upon ROCE. The Ca2+ responses at the plasma membrane in general were not affected by SK1 expression. In summary, our results show that SK1/S1P-signaling regulates Ca2+ signals at the caveolae. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. © 2015 Elsevier B.V.

A novel chimeric aequorin fused with caveolin-1 reveals a sphingosine kinase 1-regulated Ca2+ microdomain in the caveolar compartment

RIMESSI, Alessandro;PINTON, Paolo
Penultimo
;
2015

Abstract

Caveolae are plasma membrane invaginations enriched in sterols and sphingolipids. Sphingosine kinase 1 (SK1) is an oncogenic protein that converts sphingosine to sphingosine 1-phosphate (S1P), which is a messenger molecule involved in calcium signaling. Caveolae contain calcium responsive proteins, but the effects of SK1 or S1P on caveolar calcium signaling have not been investigated. We generated a Caveolin-1-Aequorin fusion protein (Cav1-Aeq) that can be employed for monitoring the local calcium concentration at the caveolae ([Ca2+]cav). In HeLa cells, Cav1-Aeq reported different [Ca2+] as compared to the plasma membrane [Ca2+] in general (reported by SNAP25-Aeq) or as compared to the cytosolic [Ca2+] (reported by cyt-Aeq). The Ca2+ signals detected by Cav1-Aeq were significantly attenuated when the caveolar structures were disrupted by methyl-β-cyclodextrin, suggesting that the caveolae are specific targets for Ca2+ signaling. HeLa cells overexpressing SK1 showed increased [Ca2+]cav during histamine-induced Ca2+ mobilization in the absence of extracellular Ca2+ as well as during receptor-operated Ca2+ entry (ROCE). The SK1-induced increase in [Ca2+]cav during ROCE was reverted by S1P receptor antagonists. In accordance, pharmacologic inhibition of SK1 reduced the [Ca2+]cav during ROCE. S1P treatment stimulated the [Ca2+]cav upon ROCE. The Ca2+ responses at the plasma membrane in general were not affected by SK1 expression. In summary, our results show that SK1/S1P-signaling regulates Ca2+ signals at the caveolae. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. © 2015 Elsevier B.V.
2015
Pulli, Ilari; Blom, Tomas; Löf, Christoffer; Magnusson, Melissa; Rimessi, Alessandro; Pinton, Paolo; Törnquist, Kid
File in questo prodotto:
File Dimensione Formato  
175.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2333743
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact