Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder test. Moreover the putative role played by the endogenous NPS/NPSR system in regulating mice aggressiveness was investigating using mice lacking the NPSR receptor (NPSR(-/-)) and the NPSR selective antagonists [(t)Bu-D-Gly(5)]NPS and SHA 68. NPS (0.01-1 nmol, icv) reduced, in a dose dependent manner, both the time that resident mice spent attacking the intruder mice and their number of attacks, producing pharmacological effects similar to those elicited by the standard anti-aggressive drug valproate (300 mg/kg, ip). This NPS effect was evident in NPSR wild type (NPSR(+/+)) mice but completely disappeared in NPSR(-/-) mice. Moreover, NPSR(-/-) mice displayed a significantly higher time spent attacking than NPSR(+/+) mice. [(t)Bu-D-Gly(5)]NPS (10 nmol, icv) did not change the behavior of mice in the resident/intruder test but completely counteracted NPS effects. SHA 68 (50 mg/kg, ip) was inactive per se and against NPS. In conclusion, this study demonstrated that NPS produces anti-aggressive effects in mice through the selective activation of NPSR and that the endogenous NPS/NPSR system can exert a role in the control of aggressiveness levels under the present experimental conditions.

Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor

Ruzza, C
;
Guerrini, R;Trapella, C
Penultimo
;
Gavioli, E
Ultimo
2015

Abstract

Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder test. Moreover the putative role played by the endogenous NPS/NPSR system in regulating mice aggressiveness was investigating using mice lacking the NPSR receptor (NPSR(-/-)) and the NPSR selective antagonists [(t)Bu-D-Gly(5)]NPS and SHA 68. NPS (0.01-1 nmol, icv) reduced, in a dose dependent manner, both the time that resident mice spent attacking the intruder mice and their number of attacks, producing pharmacological effects similar to those elicited by the standard anti-aggressive drug valproate (300 mg/kg, ip). This NPS effect was evident in NPSR wild type (NPSR(+/+)) mice but completely disappeared in NPSR(-/-) mice. Moreover, NPSR(-/-) mice displayed a significantly higher time spent attacking than NPSR(+/+) mice. [(t)Bu-D-Gly(5)]NPS (10 nmol, icv) did not change the behavior of mice in the resident/intruder test but completely counteracted NPS effects. SHA 68 (50 mg/kg, ip) was inactive per se and against NPS. In conclusion, this study demonstrated that NPS produces anti-aggressive effects in mice through the selective activation of NPSR and that the endogenous NPS/NPSR system can exert a role in the control of aggressiveness levels under the present experimental conditions.
2015
Ruzza, C; Asth, L; Guerrini, R; Trapella, C; Gavioli, E
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0028390815001677-main.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 621.53 kB
Formato Adobe PDF
621.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2332379
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact