Despite the weakly coordinating ability of the bis(trifluoromethylsulfonyl)imide anion ([Tf2N]-) the corresponding ionic liquids (ILs) are able to dissolve relevant amounts of metal salts having the same anion, M[Tf2N]x. To better understand the metal dissolution process we evaluated the interaction ability of a set of metal cations (Y(III), Al(III), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Li(I), and Na(I)) toward the [Tf2N]- anion measuring the relative aptitude to give the corresponding anionic monocharged complex, [M(Tf2N)x+1]- using the ESI-MS technique. UV-vis and NMR measurements were carried out to verify the consistence between the liquid and the gas phase. Density functional theory calculations have been used to identify the metal-containing species and determine their relative stability. An interesting correlation between interaction ability and chemical properties (Lewis acidity) was found.

Dissolution of Metal Salts in Bis-(trifluoromethylsulfonyl)imide Based Ionic Liquids: Studying the Affinity of Metal Cations towards a “Weakly Coordinating” Anion

BORTOLINI, Olga
Primo
;
MASSI, Alessandro;
2015

Abstract

Despite the weakly coordinating ability of the bis(trifluoromethylsulfonyl)imide anion ([Tf2N]-) the corresponding ionic liquids (ILs) are able to dissolve relevant amounts of metal salts having the same anion, M[Tf2N]x. To better understand the metal dissolution process we evaluated the interaction ability of a set of metal cations (Y(III), Al(III), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Li(I), and Na(I)) toward the [Tf2N]- anion measuring the relative aptitude to give the corresponding anionic monocharged complex, [M(Tf2N)x+1]- using the ESI-MS technique. UV-vis and NMR measurements were carried out to verify the consistence between the liquid and the gas phase. Density functional theory calculations have been used to identify the metal-containing species and determine their relative stability. An interesting correlation between interaction ability and chemical properties (Lewis acidity) was found.
2015
Bortolini, Olga; Cinzia, Chiappe; Tiziana, Ghilardi; Massi, Alessandro; Silvio, Pomelli Christian
File in questo prodotto:
File Dimensione Formato  
jp507437g.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bortolini.JphyschemA_rev1.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2326709
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 38
social impact