We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. Fourteen new clusters were detected by XMM-Newton, ten single clusters and two double systems. Redshifts from X-ray spectroscopy lie in the range 0.2 to 0.9, with six clusters at z > 0.5. Estimated masses (M-500) range from 2.5 x 10(14) to 8 x 10(14) M-circle dot. We discuss our results in the context of the full XMM-Newton validation programme, in which 51 new clusters have been detected. This includes four double and two triple systems, some of which are chance projections on the sky of clusters at different redshifts. We find that association with a source from the RASS-Bright Source Catalogue is a robust indicator of the reliability of a candidate, whereas association with a source from the RASS-Faint Source Catalogue does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. Candidate validation from association with SDSS galaxy overdensity at z > 0.5 is also discussed. The full sample gives a Planck sensitivity threshold of Y-500 similar to 4 x 10(-4) arcmin(2), with indication for Malmquist bias in the YX-Y500 relation below this threshold. The corresponding mass threshold depends on redshift. Systems with M-500 > 5 x 10(14) M-circle dot at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the Y-X-Y-500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. In particular, there is no significant evolution of the Y-X/Y-500 ratio.

Planck intermediate results IV. The XMM-Newton validation programme for new Planck galaxy clusters

NATOLI, Paolo;
2013

Abstract

We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. Fourteen new clusters were detected by XMM-Newton, ten single clusters and two double systems. Redshifts from X-ray spectroscopy lie in the range 0.2 to 0.9, with six clusters at z > 0.5. Estimated masses (M-500) range from 2.5 x 10(14) to 8 x 10(14) M-circle dot. We discuss our results in the context of the full XMM-Newton validation programme, in which 51 new clusters have been detected. This includes four double and two triple systems, some of which are chance projections on the sky of clusters at different redshifts. We find that association with a source from the RASS-Bright Source Catalogue is a robust indicator of the reliability of a candidate, whereas association with a source from the RASS-Faint Source Catalogue does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. Candidate validation from association with SDSS galaxy overdensity at z > 0.5 is also discussed. The full sample gives a Planck sensitivity threshold of Y-500 similar to 4 x 10(-4) arcmin(2), with indication for Malmquist bias in the YX-Y500 relation below this threshold. The corresponding mass threshold depends on redshift. Systems with M-500 > 5 x 10(14) M-circle dot at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the Y-X-Y-500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. In particular, there is no significant evolution of the Y-X/Y-500 ratio.
2013
P. A., R.; N., Aghanim; M., Arnaud; M., Ashdown; J., Aumont; C., Baccigalupi; A., Balbi; A. J., Banday; R. B., Barreiro; J. G., Bartlett; E., Battaner; K., Benabed; A., Benoit; J. . ., P.; M., Bersanelli; I., Bikmaev; H., Boehringer; A., Bonaldi; J. R., Bond; S., Borgani; J., Borrill; F. R., Bouchet; M. L., Brown; C., Burigana; R. C., Butler; P., Cabella; P., Carvalho; A., Catalano; L., Cayon; A., Chamballu; R. . . R., L. . . Y.; G., Chon; P. R., Christensen; D. L., Clements; S., Colafrancesco; S., Colombi; A., Coulais; B. P., Crill; F., Cuttaia; A. D., Silva; H., Dahle; R. J., Davis; P. d., Bernardis; G. d., Gasperis; G. d., Zotti; J., Delabrouille; J., Democles; F. . ., X.; J. M., Diego; K., Dolag; H., Dole; S., Donzelli; O., Dore; M., Douspis; X., Dupac; T. A., Ensslin; H. K., Eriksen; F., Finelli; I., Flores Cacho; O., Forni; M., Frailis; E., Franceschi; M., Frommert; S., Galeotta; K., Ganga; R. T., Genova Santos; Y., Giraud Heraud; J., Gonzalez Nuevo; R., Gonzalez Riestra; K. M., Gorski; A., Gregorio; A., Gruppuso; F. K., Hansen; D., Harrison; A., Hempel; S., Henrot Versille; C., Hernandez Monteagudo; D., Herranz; S. R., Hildebrandt; E., Hivon; M., Hobson; W. A., Holmes; A., Hornstrup; W., Hovest; K. M., Huffenberger; G., Hurier; A. H., Jaffe; T., Jagemann; W. C., Jones; M., Juvela; R., Kneissl; J., Knoche; L., Knox; M., Kunz; H., Kurki Suonio; G., Lagache; J. . ., M.; A., Lasenby; C. R., Lawrence; M. L., Jeune; S., Leach; R., Leonardi; A., Liddle; P. B., Lilje; M., Linden Vornle; M., Lopez Caniego; G., Luzzi; J. F., Macias Perez; D., Maino; N., Mandolesi; R., Mann; M., Maris; F., Marleau; D. J., Marshall; E., Martinez Gonzalez; S., Masi; M., Massardi; S., Matarrese; P., Mazzotta; S., Mei; P. R., Meinhold; A., Melchiorri; J. . ., B.; L., Mendes; A., Mennella; S., Mitra; M. . ., A.; A., Moneti; G., Morgante; D., Mortlock; D., Munshi; P., Naselsky; F., Nati; Natoli, Paolo; H. U., Norgaard Nielsen; F., Noviello; S., Osborne; F., Pajot; D., Paoletti; O., Perdereau; F., Perrotta; F., Piacentini; M., Piat; E., Pierpaoli; R., Piffaretti; S., Plaszczynski; P., Platania; E., Pointecouteau; G., Polenta; L., Popa; T., Poutanen; G. W., Pratt; S., Prunet; J. . ., L.; M., Reinecke; M., Remazeilles; C., Renault; S., Ricciardi; G., Rocha; C., Rosset; M., Rossetti; J. A., Rubino Martin; B., Rusholme; M., Sandri; G., Savini; D., Scott; G. F., Smoot; A., Stanford; F., Stivoli; R., Sudiwala; R., Sunyaev; D., Sutton; A. . . S., J. . . F.; J. A., Tauber; L., Terenzi; L., Toffolatti; M., Tomasi; M., Tristram; L., Valenziano; B. V., Tent; P., Vielva; F., Villa; N., Vittorio; L. A., Wade; B. D., Wandelt; N., Welikala; J., Weller; S. D., M.; D., Yvon; A., Zacchei; A., Zonca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2284445
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 31
social impact