The Notch pathway is functionally important in breast cancer. Notch-1 has been reported to maintain an estrogen-independent phenotype in estrogen receptor α (ERα)+ breast cancer cells. Notch-4 expression correlates with Ki67. Notch-4 also plays a key role in breast cancer stem-like cells. Estrogen-independent breast cancer cell lines have higher Notch activity than estrogen-dependent lines. Protein kinase Cα (PKCα) overexpression is common in endocrine-resistant breast cancers and promotes tamoxifen (TAM)-resistant growth in breast cancer cell lines. We tested whether PKCα overexpression affects Notch activity and whether Notch signaling contributes to endocrine resistance in PKCα-overexpressing breast cancer cells.Analysis of published microarray data from ERα+ breast carcinomas shows that PKCα expression correlates strongly with Notch-4. Real-time reverse transcription PCR and immunohistochemistry on archival specimens confirmed this finding. In a PKCα-overexpressing, TAM-resistant T47D model, PKCα selectively increases Notch-4, but not Notch-1, expression in vitro and in vivo. This effect is mediated by activator protein-1 (AP-1) occupancy of the Notch-4 promoter. Notch-4 knockdown inhibits estrogen-independent growth of PKCα-overexpressing T47D cells, whereas Notch-4IC expression stimulates it. Gene expression profiling shows that multiple genes and pathways associated with endocrine resistance are induced in Notch-4IC- and PKCα-expressing T47D cells. In PKCα-overexpressing T47D xenografts, an orally active γ-secretase inhibitor at clinically relevant doses significantly decreased estrogen-independent tumor growth, alone and in combination with TAM. In conclusion, PKCα overexpression induces Notch-4 through AP-1. Notch-4 promotes estrogen-independent, TAM-resistant growth and activates multiple pathways connected with endocrine resistance and chemoresistance. Notch inhibitors should be clinically evaluated in PKCα- and Notch-4-overexpressing, endocrine-resistant breast cancers.

Crosstalk between PKCα and Notch-4 in endocrine-resistant breast cancer cells.

RIZZO, Paola;
2013

Abstract

The Notch pathway is functionally important in breast cancer. Notch-1 has been reported to maintain an estrogen-independent phenotype in estrogen receptor α (ERα)+ breast cancer cells. Notch-4 expression correlates with Ki67. Notch-4 also plays a key role in breast cancer stem-like cells. Estrogen-independent breast cancer cell lines have higher Notch activity than estrogen-dependent lines. Protein kinase Cα (PKCα) overexpression is common in endocrine-resistant breast cancers and promotes tamoxifen (TAM)-resistant growth in breast cancer cell lines. We tested whether PKCα overexpression affects Notch activity and whether Notch signaling contributes to endocrine resistance in PKCα-overexpressing breast cancer cells.Analysis of published microarray data from ERα+ breast carcinomas shows that PKCα expression correlates strongly with Notch-4. Real-time reverse transcription PCR and immunohistochemistry on archival specimens confirmed this finding. In a PKCα-overexpressing, TAM-resistant T47D model, PKCα selectively increases Notch-4, but not Notch-1, expression in vitro and in vivo. This effect is mediated by activator protein-1 (AP-1) occupancy of the Notch-4 promoter. Notch-4 knockdown inhibits estrogen-independent growth of PKCα-overexpressing T47D cells, whereas Notch-4IC expression stimulates it. Gene expression profiling shows that multiple genes and pathways associated with endocrine resistance are induced in Notch-4IC- and PKCα-expressing T47D cells. In PKCα-overexpressing T47D xenografts, an orally active γ-secretase inhibitor at clinically relevant doses significantly decreased estrogen-independent tumor growth, alone and in combination with TAM. In conclusion, PKCα overexpression induces Notch-4 through AP-1. Notch-4 promotes estrogen-independent, TAM-resistant growth and activates multiple pathways connected with endocrine resistance and chemoresistance. Notch inhibitors should be clinically evaluated in PKCα- and Notch-4-overexpressing, endocrine-resistant breast cancers.
2013
Yun, J; Pannuti, A; Espinoza, I; Zhu, H; Hicks, C; Zhu, X; Caskey, M; Rizzo, Paola; D'Souza, G; Backus, K; Denning, Mf; Coon, J; Sun, M; Bresnick, Eh; Osipo, C; Wu, J; Strack, Pr; Tonetti, Da; Miele, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2177219
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 48
social impact