We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman–Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.

Vector modulational instability induced by Raman scattering in highly birefringent fiber

TRILLO, Stefano;
2013

Abstract

We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman–Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.
2013
F., Amrani; B., Kibler; P., Grelu; S., Wabnitz; Trillo, Stefano; G., Millot
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2170813
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact