Duchenne muscular dystrophy (DMD) is a severe hereditary neuromuscular disorder caused by mutations in the dystrophin gene. Antisense-mediated targeted exon skipping has been shown to restore dystrophin expression both in DMD patients and in the mdx mouse, the murine model of DMD, but the ineffective delivery of these molecules limits their therapeutic use. We demonstrated that PMMA/N-isopropil-acrylamide (ZM2) nanoparticles (NPs), administered both intraperitoneally and orally, were able to deliver 2′OMePS antisense inducing various extents of dystrophin restoration in the mdx mice. Defining NP biodistribution is crucial to improve effects on target and dose regimens; thus, we performed in vivo studies of novel ZM4 NPs. ZM4 are conjugated with NIR fluorophores as optical probes suitable for studies on the Odyssey Imaging System. Our results indicate that NPs are widely distributed in all body muscles, including skeletal muscles and heart, suggesting that these vehicles are appropriate to deliver antisense oligonucleotides for targeting striated muscles in the DMD animal model, thus opening new horizons for Duchenne therapy.

Biodistribution Studies of Polymeric Nanoparticles for Drug Delivery in Mice.

FALZARANO, Maria Sofia;BASSI, Elena;PASSARELLI, Chiara;FERLINI, Alessandra
2014

Abstract

Duchenne muscular dystrophy (DMD) is a severe hereditary neuromuscular disorder caused by mutations in the dystrophin gene. Antisense-mediated targeted exon skipping has been shown to restore dystrophin expression both in DMD patients and in the mdx mouse, the murine model of DMD, but the ineffective delivery of these molecules limits their therapeutic use. We demonstrated that PMMA/N-isopropil-acrylamide (ZM2) nanoparticles (NPs), administered both intraperitoneally and orally, were able to deliver 2′OMePS antisense inducing various extents of dystrophin restoration in the mdx mice. Defining NP biodistribution is crucial to improve effects on target and dose regimens; thus, we performed in vivo studies of novel ZM4 NPs. ZM4 are conjugated with NIR fluorophores as optical probes suitable for studies on the Odyssey Imaging System. Our results indicate that NPs are widely distributed in all body muscles, including skeletal muscles and heart, suggesting that these vehicles are appropriate to deliver antisense oligonucleotides for targeting striated muscles in the DMD animal model, thus opening new horizons for Duchenne therapy.
2014
Falzarano, Maria Sofia; Bassi, Elena; Passarelli, Chiara; P., Braghetta; Ferlini, Alessandra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2118814
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact