We perform a morphological study of 124 spectroscopically confirmed cluster galaxies in the redshift (z) = 0.84 galaxy cluster RX J0152.7-1357. Our classification scheme includes color information, visual morphology, and one- and two-component light profile fitting derived from Hubble Space Telescope riz imaging. We adopt a modified version of a detailed classification scheme previously used in studies of field galaxies and found to be correlated with kinematic features of those galaxies. We compare our cluster galaxy morphologies to those of field galaxies at similar redshift. We also compare galaxy morphologies in regions of the cluster with different dark-matter density as determined by weak-lensing maps. We find an early-type fraction for the cluster population as a whole of 47%, about 2.8 times higher than the field, and similar to the dynamically young cluster MS 1054 at similar redshift. We find the most drastic change in morphology distribution between the low and intermediate dark-matter density regions within the cluster, with the early-type fraction doubling and the peculiar fraction dropping by nearly half. The peculiar fraction drops more drastically than the spiral fraction going from the outskirts to the intermediate-density regions. This suggests that many galaxies falling into clusters at z ~ 0.8 may evolve directly from peculiar, merging, and compact systems into early-type galaxies, without having the chance to first evolve into a regular spiral galaxy.

Morphology with light profile fitting of confirmed cluster galaxies at z= 0.84

ROSATI, Piero;
2013

Abstract

We perform a morphological study of 124 spectroscopically confirmed cluster galaxies in the redshift (z) = 0.84 galaxy cluster RX J0152.7-1357. Our classification scheme includes color information, visual morphology, and one- and two-component light profile fitting derived from Hubble Space Telescope riz imaging. We adopt a modified version of a detailed classification scheme previously used in studies of field galaxies and found to be correlated with kinematic features of those galaxies. We compare our cluster galaxy morphologies to those of field galaxies at similar redshift. We also compare galaxy morphologies in regions of the cluster with different dark-matter density as determined by weak-lensing maps. We find an early-type fraction for the cluster population as a whole of 47%, about 2.8 times higher than the field, and similar to the dynamically young cluster MS 1054 at similar redshift. We find the most drastic change in morphology distribution between the low and intermediate dark-matter density regions within the cluster, with the early-type fraction doubling and the peculiar fraction dropping by nearly half. The peculiar fraction drops more drastically than the spiral fraction going from the outskirts to the intermediate-density regions. This suggests that many galaxies falling into clusters at z ~ 0.8 may evolve directly from peculiar, merging, and compact systems into early-type galaxies, without having the chance to first evolve into a regular spiral galaxy.
2013
J. B., Nantais; H., Flores; R., Demarco; C., Lidman; Rosati, Piero; M. J., Jee
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2049016
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact