Liquid chromatography (LC) combined with tandem mass spectrometry (MS/MS), based on the use of a hybrid quadrupole-time-of-flight mass analyzer, was used to investigate the reactivity of nine fungicides in free chlorine-containing water samples. Three of the selected compounds (fenhexamid, FEN; pyrimethanil, PYR; and cyprodinil, CYP) displayed a poor stability in presence of moderate chlorine levels; thus, the effects of different parameters on their half-lives (t1/2) were evaluated. Sample pH, bromide traces, and the water matrix affected their relative stabilities. Despite such variations, the three fungicides are degraded at significant rates not only in ultrapure, but also in surface water spiked with chlorine levels up to 2 μg ml-1, and when mixed with chlorinated tap water, generating several transformation products (TPs). The time-course of precursor species and their TPs was followed in the LC-MS mode, using the information contained in accurate, full scan mass spectra (MS) to propose the empirical formulae of TPs. Thereafter, their ion product scan (MS/MS) spectra were considered to set their chemical structures; allowing, in some cases, to distinguish between isomeric TPs. The reaction pathway of FEN, the less stable fungicide, involved just an electrophilic substitution of hydrogen per chlorine, or bromine, and cleavage of the molecule to render an amide. PYR and CYP shared common reaction routes consisting of halogenation, hydroxylation, and condensation processes leading to complex mixtures of TPs, which were relatively stable to further transformations. Copyright © 2013 John Wiley & Sons, Ltd.

Liquid chromatography time-of-flight mass spectrometry evaluation of fungicides reactivity in free chlorine containing water samples

PIETROGRANDE, Maria Chiara;
2013

Abstract

Liquid chromatography (LC) combined with tandem mass spectrometry (MS/MS), based on the use of a hybrid quadrupole-time-of-flight mass analyzer, was used to investigate the reactivity of nine fungicides in free chlorine-containing water samples. Three of the selected compounds (fenhexamid, FEN; pyrimethanil, PYR; and cyprodinil, CYP) displayed a poor stability in presence of moderate chlorine levels; thus, the effects of different parameters on their half-lives (t1/2) were evaluated. Sample pH, bromide traces, and the water matrix affected their relative stabilities. Despite such variations, the three fungicides are degraded at significant rates not only in ultrapure, but also in surface water spiked with chlorine levels up to 2 μg ml-1, and when mixed with chlorinated tap water, generating several transformation products (TPs). The time-course of precursor species and their TPs was followed in the LC-MS mode, using the information contained in accurate, full scan mass spectra (MS) to propose the empirical formulae of TPs. Thereafter, their ion product scan (MS/MS) spectra were considered to set their chemical structures; allowing, in some cases, to distinguish between isomeric TPs. The reaction pathway of FEN, the less stable fungicide, involved just an electrophilic substitution of hydrogen per chlorine, or bromine, and cleavage of the molecule to render an amide. PYR and CYP shared common reaction routes consisting of halogenation, hydroxylation, and condensation processes leading to complex mixtures of TPs, which were relatively stable to further transformations. Copyright © 2013 John Wiley & Sons, Ltd.
2013
T., Rodríguez Cabo; M., Paganini; I., Carpinteiro; L., Fontenla; I., Rodríguez; Pietrogrande, Maria Chiara; R., Cela
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1967613
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact