The paper presents a methodology for noise and vibration analysis of gear pumps and its application to an external gear pump for automotive applications. The methodology addresses the use of a combined numerical model and experimental analyses. The combined model includes a lumped-parameter model, a finite-element model and a boundary-element model. The lumped-parameter (LP) model regards the interior parts of the pump (bearing blocks and gears loaded by the pressure distribution and the driving torque), the finite element (FE) model regards the external parts of the pump (casing and end plates), while the boundary element (BE) model enables the estimation of the emitted noise in operational conditions. Based on experimental evidences, attention has been devoted to the modelling of the pump lubricant oil: the fluid-structure interaction between the oil and pump casing was taken into account. In the case of gear pumps all these important effects have to be considered in the same model in order to take their interactions into account. The model has been assessed using experiments: the experimental accelerations and acoustic pressure measured in operational conditions have been compared with the simulated data coming from the combined LP/FE/BE model. The combined model can be considered a very useful tool for design optimisation

Modelling dynamic behaviour and noise generation in gear pumps: Procedure and validation

MUCCHI, Emiliano;DALPIAZ, Giorgio
2014

Abstract

The paper presents a methodology for noise and vibration analysis of gear pumps and its application to an external gear pump for automotive applications. The methodology addresses the use of a combined numerical model and experimental analyses. The combined model includes a lumped-parameter model, a finite-element model and a boundary-element model. The lumped-parameter (LP) model regards the interior parts of the pump (bearing blocks and gears loaded by the pressure distribution and the driving torque), the finite element (FE) model regards the external parts of the pump (casing and end plates), while the boundary element (BE) model enables the estimation of the emitted noise in operational conditions. Based on experimental evidences, attention has been devoted to the modelling of the pump lubricant oil: the fluid-structure interaction between the oil and pump casing was taken into account. In the case of gear pumps all these important effects have to be considered in the same model in order to take their interactions into account. The model has been assessed using experiments: the experimental accelerations and acoustic pressure measured in operational conditions have been compared with the simulated data coming from the combined LP/FE/BE model. The combined model can be considered a very useful tool for design optimisation
2014
Mucchi, Emiliano; A., Rivola; Dalpiaz, Giorgio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1899812
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 39
social impact