Hybridization of two different bioactive molecules with different mechanism of action is one of the methods that are being adopted to treat cancer. Molecules bearing a thiazolidine-2,4-dione scaffold have been recognized as antineoplastic agents with a broad spectrum of activity against many cancer cell lines. In this manuscript we have described the synthesis and biological evaluation of two series of N-3-substituted-5-arylidene thiazolidine-2,4-diones, bearing the α-bromoacryloylamido moiety at the para- or meta-position on the phenyl of the arylidene portion. We have observed that selected compounds 5a, 5c and 5g suppress proliferation of human myeloid leukaemia HL-60 and U937 cells by triggering morphological changes and internucleosomal DNA fragmentation, which are well-known features of apoptosis. Finally, our results indicated that the investigated compounds induced apoptotic cell death through a mechanism that involved activation of multiple caspases and was also associated with the release of cytochrome c from the mitochondria. © 2013 Elsevier Masson SAS. All rights reserved.

Anticancer activity of novel hybrid molecules containing 5-benzylidene thiazolidine-2,4-dione

ROMAGNOLI, Romeo;BARALDI, Pier Giovanni;
2013

Abstract

Hybridization of two different bioactive molecules with different mechanism of action is one of the methods that are being adopted to treat cancer. Molecules bearing a thiazolidine-2,4-dione scaffold have been recognized as antineoplastic agents with a broad spectrum of activity against many cancer cell lines. In this manuscript we have described the synthesis and biological evaluation of two series of N-3-substituted-5-arylidene thiazolidine-2,4-diones, bearing the α-bromoacryloylamido moiety at the para- or meta-position on the phenyl of the arylidene portion. We have observed that selected compounds 5a, 5c and 5g suppress proliferation of human myeloid leukaemia HL-60 and U937 cells by triggering morphological changes and internucleosomal DNA fragmentation, which are well-known features of apoptosis. Finally, our results indicated that the investigated compounds induced apoptotic cell death through a mechanism that involved activation of multiple caspases and was also associated with the release of cytochrome c from the mitochondria. © 2013 Elsevier Masson SAS. All rights reserved.
2013
Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, M. K.; Camacho, M. E.; Balzarini, J.; Bermejo, J.; Estévez, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1784699
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 55
social impact