A number of cobalt complexes of substituted polypyridine ligands were synthesized and investigated as possible alternatives to the volatile and corrosive iodide/triiodide redox couple commonly used as an electron-transfer mediator in dye-sensitized solar cells (DSSCs). The extinction coefficients in the visible spectrum are on the order of 102 M-1 cm-1 for the majority of these complexes, diminishing competition with the light-harvesting dye. Cyclic voltammetric studies revealed a dramatic surface dependence of the heterogeneous electron-transfer rate, which is surprisingly different for gold, carbon, and platinum electrodes. DSSCs were assembled using a mediator that consisted of a mixture of Co(II) and Co(III) complexes in a 10:1 ratio. DSSCs containing these mediators were used to characterize incident photon-to-current conversion efficiency and photoelectrochemical responses. The best performing of these mediators were identified and subjected to further study. As suggested by electrochemical results, gold and carbon are superior cathode materials to platinum, and no evidence of corrosion on any cathode material was observed. Addition of lithium salts to the mediator solution resulted in a dramatic improvement in cell performance. The observed Li+ effect is explained in terms of the recombination of injected electrons in the photoanode with the oxidized mediator. The best mediator, based on tris(4,4¢-di-tert-butyl-2,2¢-dipyridyl)- cobalt(II/III) perchlorate, resulted in DSSCs exhibiting efficiencies within 80% of that of a comparable iodide/ triiodide-mediated DSSC. Due to the commercial availability of the ligand and the simplicity with which the complex can be made, this new mediator represents a nonvolatile, noncorrosive, and practical alternative as an efficient electron-transfer mediator in DSSCs.

Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells

CARAMORI, Stefano
Penultimo
;
BIGNOZZI, Carlo Alberto
Ultimo
2002

Abstract

A number of cobalt complexes of substituted polypyridine ligands were synthesized and investigated as possible alternatives to the volatile and corrosive iodide/triiodide redox couple commonly used as an electron-transfer mediator in dye-sensitized solar cells (DSSCs). The extinction coefficients in the visible spectrum are on the order of 102 M-1 cm-1 for the majority of these complexes, diminishing competition with the light-harvesting dye. Cyclic voltammetric studies revealed a dramatic surface dependence of the heterogeneous electron-transfer rate, which is surprisingly different for gold, carbon, and platinum electrodes. DSSCs were assembled using a mediator that consisted of a mixture of Co(II) and Co(III) complexes in a 10:1 ratio. DSSCs containing these mediators were used to characterize incident photon-to-current conversion efficiency and photoelectrochemical responses. The best performing of these mediators were identified and subjected to further study. As suggested by electrochemical results, gold and carbon are superior cathode materials to platinum, and no evidence of corrosion on any cathode material was observed. Addition of lithium salts to the mediator solution resulted in a dramatic improvement in cell performance. The observed Li+ effect is explained in terms of the recombination of injected electrons in the photoanode with the oxidized mediator. The best mediator, based on tris(4,4¢-di-tert-butyl-2,2¢-dipyridyl)- cobalt(II/III) perchlorate, resulted in DSSCs exhibiting efficiencies within 80% of that of a comparable iodide/ triiodide-mediated DSSC. Due to the commercial availability of the ligand and the simplicity with which the complex can be made, this new mediator represents a nonvolatile, noncorrosive, and practical alternative as an efficient electron-transfer mediator in DSSCs.
2002
S. A., Sapp; C. M., Elliott; C., Contado; Caramori, Stefano; Bignozzi, Carlo Alberto
File in questo prodotto:
File Dimensione Formato  
sapp2002.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 134.98 kB
Formato Adobe PDF
134.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1735166
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 534
  • ???jsp.display-item.citation.isi??? 504
social impact