In this study terminal cisternae vesicles from rabbit skeletal muscle were fused into planar bilayers and the effect of calmodulin on single Ca2+ release channel currents was investigated. In the presence of 10(-7) and 10(-9) M free [Ca2+], nanomolar concentrations of calmodulin activated the channel by increasing the open probability of single-channel events in a dose dependent manner. The activatory effect of calmodulin was reversed by 10 microM ruthenium red. At 10(-5) M free [Ca2+], calmodulin (0.1-1 microM) inhibited channel activity. Calmodulin overlays were carried out using concentrations of Ca2+ similar to those used for the planar lipid bilayer assays. In the presence of 10(-7) M [Ca2+], calmodulin bound to the ryanodine receptor, to a region defined by residues 2937-3225 and 3546-3655. These results suggest that calmodulin may activate the Ca(2+)-release channel (ryanodine-receptor) by interacting with binding sites localized in the central portion of the RYR protomer

Calcium dependent activation of skeletal muscle Ca2+ release channel (ryanodine receptor) by calmodulin

TREVES, Susan Nella;ZORZATO, Francesco
1995

Abstract

In this study terminal cisternae vesicles from rabbit skeletal muscle were fused into planar bilayers and the effect of calmodulin on single Ca2+ release channel currents was investigated. In the presence of 10(-7) and 10(-9) M free [Ca2+], nanomolar concentrations of calmodulin activated the channel by increasing the open probability of single-channel events in a dose dependent manner. The activatory effect of calmodulin was reversed by 10 microM ruthenium red. At 10(-5) M free [Ca2+], calmodulin (0.1-1 microM) inhibited channel activity. Calmodulin overlays were carried out using concentrations of Ca2+ similar to those used for the planar lipid bilayer assays. In the presence of 10(-7) M [Ca2+], calmodulin bound to the ryanodine receptor, to a region defined by residues 2937-3225 and 3546-3655. These results suggest that calmodulin may activate the Ca(2+)-release channel (ryanodine-receptor) by interacting with binding sites localized in the central portion of the RYR protomer
1995
Buratti, R; Prestipino, G; Menegazzi, P; Treves, Susan Nella; Zorzato, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1728798
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 71
social impact