n skeletal muscle, the junctional sarcoplasmic reticulum (JFM) plays a crucial role in excitation-contraction coupling and Ca2+ release. In the present report, the sarcoplasmic reticulum (SR) was fractionated into longitudinal SR (LSR), terminal cisternae (TC), and JFM. Each fraction had a unique protein profile as detected by SDS-polyacrylamide gel electrophoresis as well as specific Ca2+ binding proteins as judged by 45Ca ligand overlay of nitrocellulose blots. Ca2+ binding proteins of LSR were the Ca2+ ATPase (Mr of 115K), an 80K polypeptide, and the intrinsic glycoprotein (Mr of 160K); Ca2+ binding proteins of JFM were polypeptides with the following Mr values: 350K and 325K (feet components), 200K, 170K, a doublet of 140K, 118K, 65K (calsequestrin), and 52K. Measurements of Ca2+ binding to SR fractions by equilibrium dialysis indicated that 8-17 nmol Ca2+/mg of protein was specifically bound. After EDTA extraction of calsequestrin, JFM still bound Ca2+ (5-6 nmol/mg of protein), suggesting the existence of specific Ca2+ binding sites. The Ca2+ binding sites of Ca2+-gated Ca2+ release channels might be on two JFM polypeptides (Mr's of 350K and 170K) which are putative channel constituents (F. Zorzato, A. Margreth, and P. Volpe (1986) J. Biol. Chem. 261, 13252-13257).

Calcium binding proteins of junctional sarcoplasmic reticulum: detection by 45Ca ligand overlay

ZORZATO, Francesco;
1988

Abstract

n skeletal muscle, the junctional sarcoplasmic reticulum (JFM) plays a crucial role in excitation-contraction coupling and Ca2+ release. In the present report, the sarcoplasmic reticulum (SR) was fractionated into longitudinal SR (LSR), terminal cisternae (TC), and JFM. Each fraction had a unique protein profile as detected by SDS-polyacrylamide gel electrophoresis as well as specific Ca2+ binding proteins as judged by 45Ca ligand overlay of nitrocellulose blots. Ca2+ binding proteins of LSR were the Ca2+ ATPase (Mr of 115K), an 80K polypeptide, and the intrinsic glycoprotein (Mr of 160K); Ca2+ binding proteins of JFM were polypeptides with the following Mr values: 350K and 325K (feet components), 200K, 170K, a doublet of 140K, 118K, 65K (calsequestrin), and 52K. Measurements of Ca2+ binding to SR fractions by equilibrium dialysis indicated that 8-17 nmol Ca2+/mg of protein was specifically bound. After EDTA extraction of calsequestrin, JFM still bound Ca2+ (5-6 nmol/mg of protein), suggesting the existence of specific Ca2+ binding sites. The Ca2+ binding sites of Ca2+-gated Ca2+ release channels might be on two JFM polypeptides (Mr's of 350K and 170K) which are putative channel constituents (F. Zorzato, A. Margreth, and P. Volpe (1986) J. Biol. Chem. 261, 13252-13257).
1988
Zorzato, Francesco; Volpe, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1728784
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 27
social impact