Context. The spectroscopic characteristics of GS 1826-238 a neutron star in a low-mass X-ray binary system, have already been studied by sensitive, wide band X-ray telescopes (e.g. BeppoSAX, RXTE, INTEGRAL). Up to now, the source has always been observed in a low-hard spectral state, with two spectral components typically detected. The persistent high-energy (>10 keV) emission is effectively explained by thermal Comptonisation by a hot electron cloud (kT e ∼ 20 keV); a further low energy component, modelled either by pure blackbody emission or by Compton-modified blackbody radiation by a few keV electron plasma, is generally needed to yield acceptable fits in the soft X-ray band. Aims. The aim of the present work is to investigate the origin and the nature of the low energy emission of GS 1826-238 further, along with its contribution to the bolometric output of the source, dominated by the high-temperature thermally Comptonised radiation. Methods. This kind of investigation needs sensitive data in the widest available energy band. Simultaneous covering of both the soft X-rays (below 1 keV) and the hard X-rays (up to hundreds of keV) is crucial for an unbiased characterisation of the two spectral components, so we searched the whole BeppoSAX-NFI archive for all the available GS 1826-238observations. We analysed a total of six data sets, collected from 1997 to 2000; data analysis of two of them was still unpublished. In this study we applied both a well-established (comptt) and a more recent, updated Comptonisation model (comptb), in order to get the widest quantitative information about the physical parameters at work. Results. Our results confirm that the 0.1-200 keV emission of GS 1826-238 needs two components to be explained. In particular, two populations of soft seed photons, with different colour temperatures, are observed. One population is Comptonised to high energies by a hot electron cloud (temperatures in the range 19-24 keV, anticorrelated with the source luminosity), while the other is directly observed and can be modelled by a pure blackbody. We also propose an alternative model in which both the seed photon populations are Compton-modified by the electron plasma. This model explains the observed emission of GS 1826-238 as accurately as the traditional one and, moreover, fits well in a wider evolutionary scenario able to describe the state transitions observed in neutron-star low-mass X-ray binaries. The use of comptb also indicates that, in the case of GS 1826-238, the seed photons populations are not distributed as a pure blackbody. © 2011 ESO.

BeppoSAX view of the NS-LMXB GS 1826-238

FARINELLI, Ruben;
2011

Abstract

Context. The spectroscopic characteristics of GS 1826-238 a neutron star in a low-mass X-ray binary system, have already been studied by sensitive, wide band X-ray telescopes (e.g. BeppoSAX, RXTE, INTEGRAL). Up to now, the source has always been observed in a low-hard spectral state, with two spectral components typically detected. The persistent high-energy (>10 keV) emission is effectively explained by thermal Comptonisation by a hot electron cloud (kT e ∼ 20 keV); a further low energy component, modelled either by pure blackbody emission or by Compton-modified blackbody radiation by a few keV electron plasma, is generally needed to yield acceptable fits in the soft X-ray band. Aims. The aim of the present work is to investigate the origin and the nature of the low energy emission of GS 1826-238 further, along with its contribution to the bolometric output of the source, dominated by the high-temperature thermally Comptonised radiation. Methods. This kind of investigation needs sensitive data in the widest available energy band. Simultaneous covering of both the soft X-rays (below 1 keV) and the hard X-rays (up to hundreds of keV) is crucial for an unbiased characterisation of the two spectral components, so we searched the whole BeppoSAX-NFI archive for all the available GS 1826-238observations. We analysed a total of six data sets, collected from 1997 to 2000; data analysis of two of them was still unpublished. In this study we applied both a well-established (comptt) and a more recent, updated Comptonisation model (comptb), in order to get the widest quantitative information about the physical parameters at work. Results. Our results confirm that the 0.1-200 keV emission of GS 1826-238 needs two components to be explained. In particular, two populations of soft seed photons, with different colour temperatures, are observed. One population is Comptonised to high energies by a hot electron cloud (temperatures in the range 19-24 keV, anticorrelated with the source luminosity), while the other is directly observed and can be modelled by a pure blackbody. We also propose an alternative model in which both the seed photon populations are Compton-modified by the electron plasma. This model explains the observed emission of GS 1826-238 as accurately as the traditional one and, moreover, fits well in a wider evolutionary scenario able to describe the state transitions observed in neutron-star low-mass X-ray binaries. The use of comptb also indicates that, in the case of GS 1826-238, the seed photons populations are not distributed as a pure blackbody. © 2011 ESO.
2011
Cocchi, M.; Farinelli, Ruben; Paizis, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1692105
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact