The analysis of population structure may lead to inferences about demographic phenomena. In particular, regions of sharp genetic differentiation suggest the existence of factors that impaired gene flow and increased the evolutionary role of genetic drift. Here, we present an analysis of a data set of 10 allele frequencies in 39 populations of the Mediterranean region. As a preliminary step, we describe spatial patterns of allele frequencies using spatial autocorrelation analysis. We then construct a network connecting localities and estimate genetic distances along the edges of the network. By applying specific algorithms, we locate on the map the areas of sharpest genetic differentiation, or genetic boundaries. The main boundaries separate the northern and the southern coasts, especially in their western portions; in addition, several localities appear genetically isolated. The comparatively high genetic differentiation across the western Mediterranean, where the sea distances between localities are shorter, strongly suggests that the sea distance by itself can hardly be regarded as a major isolating factor among these populations. On the contrary, the decrease in genetic resemblance between populations of the 2 coasts as one proceeds westward may reflect an increased genetic exchange in the eastern Mediterranean basin or independent human dispersal along the 2 coasts or both.

Patterns of gene flow inferred from genetic distances in the Mediterranean region.

BARBUJANI, Guido
1999

Abstract

The analysis of population structure may lead to inferences about demographic phenomena. In particular, regions of sharp genetic differentiation suggest the existence of factors that impaired gene flow and increased the evolutionary role of genetic drift. Here, we present an analysis of a data set of 10 allele frequencies in 39 populations of the Mediterranean region. As a preliminary step, we describe spatial patterns of allele frequencies using spatial autocorrelation analysis. We then construct a network connecting localities and estimate genetic distances along the edges of the network. By applying specific algorithms, we locate on the map the areas of sharpest genetic differentiation, or genetic boundaries. The main boundaries separate the northern and the southern coasts, especially in their western portions; in addition, several localities appear genetically isolated. The comparatively high genetic differentiation across the western Mediterranean, where the sea distances between localities are shorter, strongly suggests that the sea distance by itself can hardly be regarded as a major isolating factor among these populations. On the contrary, the decrease in genetic resemblance between populations of the 2 coasts as one proceeds westward may reflect an increased genetic exchange in the eastern Mediterranean basin or independent human dispersal along the 2 coasts or both.
1999
Simoni, L.; Gueresi, P.; Pettener, D.; Barbujani, Guido
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1682360
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact