Estimates of mutation rates for the noncoding hypervariable Region I (HVR-I) of mitochondrial DNA vary widely, depending on whether they are inferred from phylogenies (assuming that molecular evolution is clock-like) or directly from pedigrees. All pedigree-based studies so far were conducted on populations of European origin. In this article, we analyzed 19 deep-rooting pedigrees in a population of mixed origin in Costa Rica. We calculated two estimates of the HVR-I mutation rate, one considering all apparent mutations, and one disregarding changes at sites known to be mutational hot spots and eliminating genealogy branches which might be suspected to include errors, or unrecognized adoptions along the female lines. At the end of this procedure, we still observed a mutation rate equal to 1.24 × 10 -6, per site per year, i.e., at least threefold as high as estimates derived from phylogenies. Our results confirm that mutation rates observed in pedigrees are much higher than estimated assuming a neutral model of long-term HVRI evolution. We argue that until the cause of these discrepancies will be fully understood, both lower estimates (i.e., those derived from phylogenetic comparisons) and higher, direct estimates such as those obtained in this study, should be considered when modeling evolutionary and demographic processes. Copyright © 2012 Wiley Periodicals, Inc.

High mitochondrial mutation rates estimated from deep-rooting costa rican pedigrees

BARBUJANI, Guido
2012

Abstract

Estimates of mutation rates for the noncoding hypervariable Region I (HVR-I) of mitochondrial DNA vary widely, depending on whether they are inferred from phylogenies (assuming that molecular evolution is clock-like) or directly from pedigrees. All pedigree-based studies so far were conducted on populations of European origin. In this article, we analyzed 19 deep-rooting pedigrees in a population of mixed origin in Costa Rica. We calculated two estimates of the HVR-I mutation rate, one considering all apparent mutations, and one disregarding changes at sites known to be mutational hot spots and eliminating genealogy branches which might be suspected to include errors, or unrecognized adoptions along the female lines. At the end of this procedure, we still observed a mutation rate equal to 1.24 × 10 -6, per site per year, i.e., at least threefold as high as estimates derived from phylogenies. Our results confirm that mutation rates observed in pedigrees are much higher than estimated assuming a neutral model of long-term HVRI evolution. We argue that until the cause of these discrepancies will be fully understood, both lower estimates (i.e., those derived from phylogenetic comparisons) and higher, direct estimates such as those obtained in this study, should be considered when modeling evolutionary and demographic processes. Copyright © 2012 Wiley Periodicals, Inc.
2012
Madrigal, L.; Castrì, L.; Melendez Obando, M.; Villegas Palma, R.; Barrantes, R.; Raventos, H.; Pereira, R.; Luiselli, D.; Pettener, D.; Barbujani, Guido
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1682350
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact