The biological activity of TNF-related apoptosis inducing ligand (TRAIL) was analyzed in primary human erythroblasts derived from mononuclear cells of blood donors, kept in culture in the presence of 20 percent foetal calf serum, growth factors (EPO, SCF, IL-3) and glucocorticoids (10-6 M dexamethasone, 10-6 M oestradiol) or under growth factor and serum starvation. In the presence of growth factors and serum, primary erythroblasts showed a differential expression of TRAIL-Receptors (Rs) at various degrees of maturation and responded to TRAIL treatment with a mild cytotoxicity. On the other hand, in the absence of serum and growth factors, TRAIL treatment unexpectedly up-regulated TRAIL-R4 decoy receptor and promoted erythroblast survival. The concomitant activation of NF-kB/IkB survival pathway was detected with Western blotting and immunofluorescence procedures and confirmed by experiments performed with SN50, a pharmacological inhibitor of the NF-kB/IkB pathway. Our study indicates that TRAIL has a twofold activity on erythroid lineages: it induces a mild erythroid cell cytotoxicity in the presence of serum and growth factors, while it promotes erythroid cell survival through the activation of the NF-kB/IkB pathway under starvation conditions.

TRAIL promotes a pro-survival signal in erythropoietin-deprived human erythroblasts through the activation of an NF-kB/IkBalpha pathway.

ZAULI, Giorgio;
2011

Abstract

The biological activity of TNF-related apoptosis inducing ligand (TRAIL) was analyzed in primary human erythroblasts derived from mononuclear cells of blood donors, kept in culture in the presence of 20 percent foetal calf serum, growth factors (EPO, SCF, IL-3) and glucocorticoids (10-6 M dexamethasone, 10-6 M oestradiol) or under growth factor and serum starvation. In the presence of growth factors and serum, primary erythroblasts showed a differential expression of TRAIL-Receptors (Rs) at various degrees of maturation and responded to TRAIL treatment with a mild cytotoxicity. On the other hand, in the absence of serum and growth factors, TRAIL treatment unexpectedly up-regulated TRAIL-R4 decoy receptor and promoted erythroblast survival. The concomitant activation of NF-kB/IkB survival pathway was detected with Western blotting and immunofluorescence procedures and confirmed by experiments performed with SN50, a pharmacological inhibitor of the NF-kB/IkB pathway. Our study indicates that TRAIL has a twofold activity on erythroid lineages: it induces a mild erythroid cell cytotoxicity in the presence of serum and growth factors, while it promotes erythroid cell survival through the activation of the NF-kB/IkB pathway under starvation conditions.
2011
Sancilio, S; Di Giacomo, V; Quaglietta, Am; Iacone, A; Angelucci, D; Tatasciore, U; Rana, Ra; Cataldi, A; Zauli, Giorgio; Di Pietro, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1681283
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact