The effects of plasma membrane depolarization on cytosolic free calcium ([Ca2+]i) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation were investigated in the human promyelocytic cell line HL-60 differentiated with either dimethyl sulfoxide or retinoic acid into neutrophil-like cells. Increases in [Ca2+]i and accumulation of Ins(1,4,5)P3 were triggered by two chemoattractants fMet-Leu-Phe and leukotriene B4. Plasma membrane potential was depolarized by isoosmotic substitution of NaCl with KCl, by the pore-forming ionophore gramicidin D, or by long term treatment with ouabain. Both Ca2+ mobilization from intracellular stores and Ca2+ influx across the plasma membrane were reduced by prior depolarization of plasma membrane potential regardless of the procedure employed to collapse it. Agonist-induced generation of Ins(1,4,5)P3 was also reduced in parallel in pre-depolarized HL-60 cells. The present findings provide further evidence suggesting that plasma membrane potential can be an important modulator of agonist-activated second messenger generation in myelocytic cells.

Correlation between plasma membrane potential and second messenger generation in the promyelocytic cell line HL-60

DI VIRGILIO, Francesco;
1990

Abstract

The effects of plasma membrane depolarization on cytosolic free calcium ([Ca2+]i) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation were investigated in the human promyelocytic cell line HL-60 differentiated with either dimethyl sulfoxide or retinoic acid into neutrophil-like cells. Increases in [Ca2+]i and accumulation of Ins(1,4,5)P3 were triggered by two chemoattractants fMet-Leu-Phe and leukotriene B4. Plasma membrane potential was depolarized by isoosmotic substitution of NaCl with KCl, by the pore-forming ionophore gramicidin D, or by long term treatment with ouabain. Both Ca2+ mobilization from intracellular stores and Ca2+ influx across the plasma membrane were reduced by prior depolarization of plasma membrane potential regardless of the procedure employed to collapse it. Agonist-induced generation of Ins(1,4,5)P3 was also reduced in parallel in pre-depolarized HL-60 cells. The present findings provide further evidence suggesting that plasma membrane potential can be an important modulator of agonist-activated second messenger generation in myelocytic cells.
1990
Pittet, D; DI VIRGILIO, Francesco; Pozzan, T; Monod, A; Lew, Dp
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1679525
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 31
social impact