Fura-2 is widely used to measure the concentration of cytosolic free calcium, but in many cells the dye does not remain localized within the cytoplasmic matrix. In these cells, Fura-2 is sequestered within intracellular organelles, secreted into the extracellular medium, or both. We have found that, in mouse peritoneal macrophages, J774 cells, PC12 cells, and N2A cells, Fura-2 sequestration and secretion are mediated by organic anion transport systems and are blocked by the inhibitors probenecid and sulfinpyrazone. Under appropriate conditions these agents have little affect on calcium transients, and may facilitate the use of Fura-2 in a variety of cell types.

Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers.

DI VIRGILIO, Francesco;
1990

Abstract

Fura-2 is widely used to measure the concentration of cytosolic free calcium, but in many cells the dye does not remain localized within the cytoplasmic matrix. In these cells, Fura-2 is sequestered within intracellular organelles, secreted into the extracellular medium, or both. We have found that, in mouse peritoneal macrophages, J774 cells, PC12 cells, and N2A cells, Fura-2 sequestration and secretion are mediated by organic anion transport systems and are blocked by the inhibitors probenecid and sulfinpyrazone. Under appropriate conditions these agents have little affect on calcium transients, and may facilitate the use of Fura-2 in a variety of cell types.
1990
DI VIRGILIO, Francesco; Steinberg, Th; Silverstein, Sc
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1679335
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 263
  • ???jsp.display-item.citation.isi??? 253
social impact