A wide variety of small molecules with diverse molecular scaffolds inhibit microtubule formation. In this article we report a one-pot procedure for the preparation of a novel 2-(N-pyrrolidinyl)-4-amino-5-(3′,4′,5′- trimethoxybenzoyl)thiazole in which the size of the substituent at the C-2 position of the thiazole ring plays an essential role in compound activity. The most active agent (3f) inhibited at submicromolar concentrations the growth of tumor cell lines. It also inhibited tubulin polymerization with an activity quantitatively similar to that of CA-4, and treatment of HeLa cells resulted in their arrest at the G2-M phase of the cell cycle. Furthermore, 3f was effective against multidrug resistant cancer cells and inhibited the growth of the HT-29 xenograft in a nude mouse model. This indicated that 3f is a promising new antimitotic agent with encouraging preclinical potential. © 2011 Elsevier Masson SAS. All rights reserved.

One-pot synthesis and biological evaluation of 2-pyrrolidinyl-4-amino-5- (3′,4′,5′-trimethoxybenzoyl)thiazole: A unique, highly active antimicrotubule agent

ROMAGNOLI, Romeo;BARALDI, Pier Giovanni;
2011

Abstract

A wide variety of small molecules with diverse molecular scaffolds inhibit microtubule formation. In this article we report a one-pot procedure for the preparation of a novel 2-(N-pyrrolidinyl)-4-amino-5-(3′,4′,5′- trimethoxybenzoyl)thiazole in which the size of the substituent at the C-2 position of the thiazole ring plays an essential role in compound activity. The most active agent (3f) inhibited at submicromolar concentrations the growth of tumor cell lines. It also inhibited tubulin polymerization with an activity quantitatively similar to that of CA-4, and treatment of HeLa cells resulted in their arrest at the G2-M phase of the cell cycle. Furthermore, 3f was effective against multidrug resistant cancer cells and inhibited the growth of the HT-29 xenograft in a nude mouse model. This indicated that 3f is a promising new antimitotic agent with encouraging preclinical potential. © 2011 Elsevier Masson SAS. All rights reserved.
2011
Romagnoli, Romeo; Baraldi, Pier Giovanni; C. L., Cara; M. K., Salvador; R., Bortolozzi; G., Basso; G., Viola; J., Balzarini; A., Brancale; X. H., Fue; J., Lie; S. Z., Zhang; E., Hamel
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1545800
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact