Activation of the estrogen receptor-alpha (ERalpha) mediates the vasculoprotective effects of estrogen, in part, through modulating nitric oxide (NO) production and vasodilation. Whereas inflammation is accompanied by altered vascular reactivity and underlies the pathogenesis of vascular disease, the role of the ERalpha in the vascular responses associated with acute systemic inflammation remains poorly characterized. Contractile and relaxation responses of isolated aortic segments were investigated 12 h after ip injection of saline or lipopolysaccharide (LPS, 10 mg/kg) in male wild-type (ERalpha(+/+)) and ERalpha-deficient (ERalpha(-/-)) mice. As previously observed, LPS-injected ERalpha(+/+) mice displayed reduced contractile responses to phenylephrine and enhanced vasodilation in response to acetylcholine. In contrast, aortic tissues from LPS-injected ERalpha(-/-) mice displayed enhanced contractile responses and reduced sensitivity to acetylcholine- and sodium nitroprusside-induced vasodilation. LPS treatment in ERalpha(+/+) and ERalpha(-/-) mice resulted in similar increased levels of systemic NO production and inducible NO synthase expression in the vascular wall. However, expression of mRNA and protein for endothelial NOS and soluble guanylate cyclase (alpha- and beta-subunits) were significantly reduced in aortic tissues from LPS-treated ERalpha(-/-) animals, possibly accounting for reduced endothelial NO production and reduced smooth muscle responses to NO. These findings represent new evidence of the functional role of ERalpha in the male vasculature and suggest that during acute LPS-induced inflammatory responses, the ERalpha mediates the sustained expression of the molecular machinery essential for endothelial NO synthesis (i.e. endothelial NOS) and the vascular responses to NO (i.e. soluble guanylate cyclase).

Compromised aortic vasoreactivity in male estrogen receptor-alpha-deficient mice during acute lipopolysaccharide-induced inflammation.

VALACCHI, Giuseppe;
2007

Abstract

Activation of the estrogen receptor-alpha (ERalpha) mediates the vasculoprotective effects of estrogen, in part, through modulating nitric oxide (NO) production and vasodilation. Whereas inflammation is accompanied by altered vascular reactivity and underlies the pathogenesis of vascular disease, the role of the ERalpha in the vascular responses associated with acute systemic inflammation remains poorly characterized. Contractile and relaxation responses of isolated aortic segments were investigated 12 h after ip injection of saline or lipopolysaccharide (LPS, 10 mg/kg) in male wild-type (ERalpha(+/+)) and ERalpha-deficient (ERalpha(-/-)) mice. As previously observed, LPS-injected ERalpha(+/+) mice displayed reduced contractile responses to phenylephrine and enhanced vasodilation in response to acetylcholine. In contrast, aortic tissues from LPS-injected ERalpha(-/-) mice displayed enhanced contractile responses and reduced sensitivity to acetylcholine- and sodium nitroprusside-induced vasodilation. LPS treatment in ERalpha(+/+) and ERalpha(-/-) mice resulted in similar increased levels of systemic NO production and inducible NO synthase expression in the vascular wall. However, expression of mRNA and protein for endothelial NOS and soluble guanylate cyclase (alpha- and beta-subunits) were significantly reduced in aortic tissues from LPS-treated ERalpha(-/-) animals, possibly accounting for reduced endothelial NO production and reduced smooth muscle responses to NO. These findings represent new evidence of the functional role of ERalpha in the male vasculature and suggest that during acute LPS-induced inflammatory responses, the ERalpha mediates the sustained expression of the molecular machinery essential for endothelial NO synthesis (i.e. endothelial NOS) and the vascular responses to NO (i.e. soluble guanylate cyclase).
2007
Corbacho, A. M.; Eiserich, J. P.; Zuniga, L. A.; Valacchi, Giuseppe; Villablanca, A. C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1516131
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact